Loading Events

Photonics Seminar: Michele Cotrufo, The City University of New York

Title – Nanophotonic Engineering: Extreme Control of Light using Metamaterials and Nonlinearities

Abstract – Nanophotonic devices can enable unprecedented control over the flow of light, and they hold a great potential for both fundamental studies and next-generation quantum and classical computers, low-power optoelectronics, and free-space applications. In this talk, I will provide an overview of our recent efforts on engineering integrated photonic devices and free-space metasurfaces to enable linear and nonlinear manipulation of classical and quantum light. In particular, I will describe several approaches to achieve advanced functionalities such as light isolation and trapping, highly dispersive reflectors for augmented reality displays, and analog computation.

I will first focus on our recent works on nonlinearity-based nonreciprocity, a recipe to obtain nonreciprocal wave propagation that is appealing due to its bias-free operation and ease of fabrication. I will describe the fundamental physics underlying these phenomena, its drawbacks and opportunities for wave engineering, and then discuss our experimental results in silicon photonics and radiofrequency circuits. I will then discuss how radiation trapping and release and nonlinear control of the quality factor can be obtained by combining exotic states of light, such as bound states in the continuum (BICs), with quantum or classical nonlinearities. I will show how we implemented these effects in vastly different wave-like frameworks, such as single-photon BICs in coupled cavity-atom systems and RF circuits loaded with nonlinear elements.

In the second part, the focus will shift from integrated systems to free-space metasurfaces – planarized, patterned devices with thickness smaller than or comparable to the operational wavelength. I will discuss how local and nonlocal alldielectric metasurfaces can be used to achieve different functionalities in the visible and near-infrared, such as focusing, tailored angle- and frequency-dependent mirrors for AR/VR applications, and analog computation.

I will conclude my talk by providing an outlook on promising future research directions, such as using free-space metasurfaces, possibly combined with nonlinearities and time-modulation, to create and manipulate quantum states.

Bio – Dr. Michele Cotrufo is a Postdoctoral Research Fellow at the Photonics Initiative at the CUNY Advanced Science Research Center, in New York City. He received a BS degree and MS degree in Physics from University of Bari, Italy (2010) and University of Padova, Italy (2012), respectively. He then joined the Department of Applied Physics at the Eindhoven University of Technology, Netherlands, as a doctoral student, where he investigated novel interaction mechanisms in nanophotonics and hybrid optomechanical systems. After graduating in 2017, he performed postdoctoral research at the University of Texas at Austin. He is the co-author of over 25 peer-reviewed journal papers. His current research interests span over a broad range of areas, including nonlinear phenomena in classical and quantum electromagnetic systems, nonreciprocal wave propagation, spontaneous emission control with plasmonic and dielectric metamaterials, and optical metasurfaces. In 2018, he was awarded a two-year Rubicon fellowship from the Dutch Research Council (NWO).

For more information about this hybrid event, please contact:

Diana Strickland

Photonics Initiative

dstrickland@gc.cuny.edu

Zoom Access>>>

Meeting ID: 815 4701 8626

Passcode: 028706

This event has passed.

Event Information

Date
March 21, 2022
Time
11:30 am - 12:30 pm
Location
ASRC Auditorium
Address
85 St. Nicholas Terrace
New York, NY 10031 United States
+ Google Map
Event Category: