This page will be updated periodically with published journal papers directly supported by the Simons Foundation.
Journal Publications
Our foundation-sponsored research publications in year one consisted of 85 journal papers published in several high-profile journals, including three Nature, nine Nature sub-journals, nine Physical Review Letters, three PNAS, three Optica, and two Proc. IEEE. Our work has been featured on eight journal covers this year, in four press releases, and it has been selected as Editor’s Pick three times.

1. Banerjee, D., Vitelli, V., Jülicher, F., & Surówka, P. (2021). Active Viscoelasticity of Odd Materials. Physical Review Letters, 126(13), 138001. https://doi.org/10.1103/PhysRevLett.126.138001 |
2. Abbaszadeh, H., Fruchart, M., Saarloos, W. van, & Vitelli, V. (2021). Liquid-crystal-based topological photonics. Proceedings of the National Academy of Sciences, 118(4), 2021. https://doi.org/10.1073/PNAS.2020525118 |
3. Fruchart, M., Hanai, R., Littlewood, P. B., & Vitelli, V. (2021). Non-reciprocal phase transitions. Nature 2021 592:7854, 592(7854), 363–369. https://doi.org/10.1038/s41586-021-03375-9 |
4. Fallah, A., Kiasat, Y., Silveirinha, M. G., & Engheta, N. (2021). Nonreciprocal guided waves in the presence of swift electron beams. Physical Review B, 103(21), 214303. https://doi.org/10.1103/PhysRevB.103.214303 |
5. Huidobro, P. A., Silveirinha, M. G., Galiffi, E., & Pendry, J. B. (2021). Homogenization Theory of Space-Time Metamaterials. Physical Review Applied, 16(1), 014044. https://doi.org/10.1103/PhysRevApplied.16.014044 |
6. Morgado, T. A., & Silveirinha, M. G. (2021). Active Graphene Plasmonics with a Drift-Current Bias. ACS Photonics, 8(4), 1129–1136. https://doi.org/10.1021/ACSPHOTONICS.0C01890 |
7. Fernández-Alcázar, L. J., Kononchuk, R., Li, H., & Kottos, T. (2021). Extreme Nonreciprocal Near-Field Thermal Radiation via Floquet Photonics. Physical Review Letters, 126(20), 204101. https://doi.org/10.1103/PhysRevLett.126.204101 |
8. Kononchuk, R., Feinberg, J., Knee, J., & Kottos, T. (2021). Enhanced avionic sensing based on Wigner’s cusp anomalies. Science Advances, 7(23). https://doi.org/10.1126/SCIADV.ABG8118 |
9. Mencagli, M. J., Sounas, D. L., Fink, M., & Engheta, N. (2021). Static-to-dynamic field conversion with time-varying media. https://arxiv.org/abs/2107.11420v1 |
10. Castaldi, G., Pacheco-Peña, V., Moccia, M., Engheta, N., & Galdi, V. (2021). Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials. Nanophotonics, 10(14), 3687–3699. https://doi.org/10.1515/NANOPH-2021-0231 |
11. Ramaniuk, A., Christodoulides, D. N., Assanto, G., Trippenbach, M., Jung, P. S., Krolikowski, W., Krolikowski, W., & Assanto, G. (2021). Scalar and vector supermode solitons owing to competing nonlocal nonlinearities. Optics Express, Vol. 29, Issue 6, Pp. 8015-8023, 29(6), 8015–8023. https://doi.org/10.1364/OE.417352 |
12. Christodoulides, D. N., Wise, F. W., Pourbeyram, H., & Wu, Y. (2021). Weak beam self-cleaning of femtosecond pulses in the anomalous dispersion regime. Optics Letters, Vol. 46, Issue 13, Pp. 3312-3315, 46(13), 3312–3315. https://doi.org/10.1364/OL.430926 |
13. Wu, F. O., Jung, P. S., Parto, M., Khajavikhan, M., & Christodoulides, D. N. (2020). Entropic thermodynamics of nonlinear photonic chain networks. Communications Physics 2020 3:1, 3(1), 1–7. https://doi.org/10.1038/s42005-020-00484-1 |
14. Zareei, A., Medina, E., & Bertoldi, K. (2021). Harnessing Mechanical Deformation to Reduce Spherical Aberration in Soft Lenses. Physical Review Letters, 126(8), 084301. https://doi.org/10.1103/PhysRevLett.126.084301 |
15. Li, S., Deng, B., Grinthal, A., Schneider-Yamamura, A., Kang, J., Martens, R. S., Zhang, C. T., Li, J., Yu, S., Bertoldi, K., & Aizenberg, J. (2021). Liquid-induced topological transformations of cellular microstructures. Nature 2021 592:7854, 592(7854), 386–391. https://doi.org/10.1038/s41586-021-03404-7 |
16. Castaldi, G., Pacheco-Peña, V., Moccia, M., Engheta, N., & Galdi, V. (2021). Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials. Nanophotonics. https://doi.org/10.1515/NANOPH-2021-0231 |
17. Mencagli, M. J., Sounas, D. L., Fink, M., & Engheta, N. (2021). Static-to-dynamic field conversion with time-varying media. https://arxiv.org/abs/2107.11420v1 |
18. Pacheco-Peña, V., & Engheta, N. (2021). Temporal metamaterials with gain and loss. https://arxiv.org/abs/2108.01007v1 |
19. Suwunnarat, S., Tang, Y., Reisner, M., Mortessagne, F., Kuhl, U., & Kottos, T. (2021). Towards a Broad-Band Coherent Perfect Absorption in systems without Scale-Invariance. https://arxiv.org/abs/2103.03668v1 |
20. Shi, C., Kottos, T., & Shapiro, B. (2021). Controlling optical beam thermalization via band-gap engineering. Physical Review Research, 3(3), 033219. https://doi.org/10.1103/PhysRevResearch.3.033219 |
21. Li, Y., Cohen, D., & Kottos, T. (2021). Enforcing Levy relaxation for multi-mode fibers with correlated disorder. https://arxiv.org/abs/2107.03028v1 |
22. Silveirinha, M. G. (2021). Time-Crystal Model of the Electron Spin. https://arxiv.org/abs/2107.12158v2 |
23. Bender, C. M., & Hook, D. W. (2021). $PT$-symmetric classical mechanics. PT Symmetry, 107–132. https://arxiv.org/abs/2103.04214v1 |
24. Felski, A., Bender, C. M., Klevansky, S. P., & Sarkar, S. (2021). Towards perturbative renormalization of <math xmlns. Physical Review D, 104(8), 085011. https://doi.org/10.1103/PhysRevD.104.085011 |
25. Bender, C. M., Felski, A., Klevansky, S. P., & Sarkar, S. (2021). PT Symmetry and Renormalisation in Quantum Field Theory. https://arxiv.org/abs/2103.14864v1 |
26. Nassar, H., Yousefzadeh, B., Fleury, R., Ruzzene, M., Alù, A., Daraio, C., Norris, A. N., Huang, G., & Haberman, M. R. (2020). Nonreciprocity in acoustic and elastic materials. Nature Reviews Materials 2020 5:9, 5(9), 667–685. https://doi.org/10.1038/s41578-020-0206-0 |
27. Zhang, Z., Kang, M., Zhang, X., Feng, X., Xu, Y., Chen, X., Zhang, H., Xu, Q., Tian, Z., Zhang, W., Krasnok, A., Han, J., & Alù, A. (2020). Coherent Perfect Diffraction in Metagratings. Advanced Materials, 32(36), 2002341. https://doi.org/10.1002/ADMA.202002341 |
28. Li, H., Moussa, H., Sounas, D., & Alù, A. (2020). Parity-time Symmetry Based on Time Modulation. Physical Review Applied, 14(3), 031002. https://doi.org/10.1103/PhysRevApplied.14.031002 |
29. Galiffi, E., Wang, Y.-T., Lim, Z., Pendry, J. B., Alù, A., & Huidobro, P. A. (2020). Wood Anomalies and Surface-Wave Excitation with a Time Grating. Physical Review Letters, 125(12), 127403. https://doi.org/10.1103/PhysRevLett.125.127403 |
30. Duggan, R., Mann, S. A., & Alù, A. (2020). Nonreciprocal photonic topological order driven by uniform optical pumping. Physical Review B, 102(10), 100303. https://doi.org/10.1103/PhysRevB.102.100303 |
31. Wang, M., Krasnok, A., Lepeshov, S., Hu, G., Jiang, T., Fang, J., Korgel, B. A., Alù, A., & Zheng, Y. (2020). Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. Nature Communications 2020 11:1, 11(1), 1–9. https://doi.org/10.1038/s41467-020-18793-y |
32. Li, A., Dong, J., Wang, J., Cheng, Z., Ho, J. S., Zhang, D., Wen, J., Zhang, X.-L., Chan, C. T., Alù, A., Qiu, C.-W., & Chen, L. (2020). Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. Physical Review Letters, 125(18), 187403. https://doi.org/10.1103/PhysRevLett.125.187403 |
33. Zangeneh-Nejad, F., Alù, A., & Fleury, R. (2020). Topological wave insulators: a review. Comptes Rendus. Physique, 21(4–5), 467–499. https://doi.org/10.5802/CRPHYS.3 |
35. Alù, A., Li, H., & Alù, A. (2021). Temporal switching to extend the bandwidth of thin absorbers. Optica, Vol. 8, Issue 1, Pp. 24-29, 8(1), 24–29. https://doi.org/10.1364/OPTICA.408399 |
36. Mekawy, A., & Alù, A. (2021). Giant midinfrared nonlinearity based on multiple quantum well polaritonic metasurfaces. Nanophotonics, 10(1), 667–678. https://doi.org/10.1515/NANOPH-2020-0408 |
37. Tymchenko, M., Nagulu, A., Krishnaswamy, H., & Alu, A. (2021). Universal Frequency-Domain Analysis of N-Path Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(2), 569–580. https://doi.org/10.1109/TCSI.2020.3040592 |
38. Bergman, A., Duggan, R., Sharma, K., Tur, M., Zadok, A., & Alù, A. (2021). Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. Nature Communications 2021 12:1, 12(1), 1–9. https://doi.org/10.1038/s41467-020-20797-7 |
39. Li, J., Wang, M., Wu, Z., Li, H., Hu, G., Jiang, T., Guo, J., Liu, Y., Yao, K., Chen, Z., Fang, J., Fan, D., Korgel, B. A., Alù, A., & Zheng, Y. (2020). Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures. Nano Letters, 21(2), 973–979. https://doi.org/10.1021/ACS.NANOLETT.0C03957 |
40. Xu, X., Kwon, H., Finch, S., Lee, J. Y., Nordin, L., Wasserman, D., Alù, A., & Dodabalapur, A. (2021). Reflecting metagrating-enhanced thin-film organic light emitting devices. Applied Physics Letters, 118(5), 053302. https://doi.org/10.1063/5.0034573 |
41. Janković, N., & Alù, A. (2020). Glide-Symmetric Acoustic Waveguides for Extreme Sensing and Isolation. Physical Review Applied, 15(2). https://doi.org/10.1103/physrevapplied.15.024004 |
42. Rasmussen, C., & Alù, A. (2021). Compressibility-Near-Zero Acoustic Radiation. Physical Review Applied, 15(2), 024022. https://doi.org/10.1103/PhysRevApplied.15.024022 |
43. Overvig, A., Yu, N., & Alù, A. (2021). Chiral Quasi-Bound States in the Continuum. Physical Review Letters, 126(7), 073001. https://doi.org/10.1103/PhysRevLett.126.073001 |
44. Esfahlani, H., Mazor, Y., & Alù, A. (2021). Homogenization and design of acoustic Willis metasurfaces. Physical Review B, 103(5), 054306. https://doi.org/10.1103/PhysRevB.103.054306 |
45. Ramaccia, D., Alù, A., Toscano, A., & Bilotti, F. (2021). Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials. Applied Physics Letters, 118(10), 101901. https://doi.org/10.1063/5.0042567 |
46. Overvig, A., & Alù, A. (2021). Wavefront-selective Fano resonant metasurfaces. Https://Doi.Org/10.1117/1.AP.3.2.026002, 3(2), 026002. https://doi.org/10.1117/1.AP.3.2.026002 |
47. Mann, S. A., Mekawy, A., & Alù, A. (2021). Broadband Field Localization, Density of States, and Nonlinearity Enhancement in Nonreciprocal and Topological Hotspots. Physical Review Applied, 15(3), 034064. https://doi.org/10.1103/PhysRevApplied.15.034064 |
48. Coppolaro, M., Moccia, M., Castaldi, G., Alu, A., & Galdi, V. (2021). Surface-Wave Propagation on Non-Hermitian Metasurfaces with Extreme Anisotropy. IEEE Transactions on Microwave Theory and Techniques, 69(4), 2060–2071. https://doi.org/10.1109/TMTT.2021.3057632 |
49. Barbuto, M., Alu, A., Bilotti, F., & Toscano, A. (2021). Dual-Circularly Polarized Topological Patch Antenna with Pattern Diversity. IEEE Access, 9, 48769–48776. https://doi.org/10.1109/ACCESS.2021.3068792 |
50. Alù, A., Qiu, C.-W., Hu, G., Alù, A., & Alù, A. (2021). Twistronics for photons: opinion. Optical Materials Express, Vol. 11, Issue 5, Pp. 1377-1382, 11(5), 1377–1382. https://doi.org/10.1364/OME.423521 |
51. Hu, G., Wang, M., Mazor, Y., Qiu, C.-W., & Alù, A. (2021). Tailoring Light with Layered and Moiré Metasurfaces. Trends in Chemistry, 3(5), 342–358. https://doi.org/10.1016/J.TRECHM.2021.02.004 |
52. Mekawy, A., Sounas, D. L., & Alù, A. (2021). Free-Space Nonreciprocal Transmission Based on Nonlinear Coupled Fano Metasurfaces. Photonics 2021, Vol. 8, Page 139, 8(5), 139. https://doi.org/10.3390/PHOTONICS8050139 |
53. Vakulenko, A., Kiriushechkina, S., Wang, M., Li, M., Zhirihin, D., Ni, X., Guddala, S., Korobkin, D., Alù, A., & Khanikaev, A. B. (2021). Near-Field Characterization of Higher-Order Topological Photonic States at Optical Frequencies. Advanced Materials, 33(18), 2004376. https://doi.org/10.1002/ADMA.202004376 |
54. Quan, L., Yves, S., Peng, Y., Esfahlani, H., & Alù, A. (2021). Odd Willis coupling induced by broken time-reversal symmetry. Nature Communications 2021 12:1, 12(1), 1–9. https://doi.org/10.1038/s41467-021-22745-5 |
55. Fang, J., Wang, M., Yao, K., Zhang, T., Krasnok, A., Jiang, T., Choi, J., Kahn, E., Korgel, B. A., Terrones, M., Li, X., Alù, A., & Zheng, Y. (2021). Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. Advanced Materials, 33(20), 2007236. https://doi.org/10.1002/ADMA.202007236 |
56. Mekawy, A., Li, H., Radi, Y., & Alù, A. (2021). Parametric Enhancement of Radiation from Electrically Small Antennas. Physical Review Applied, 15(5), 054063. https://doi.org/10.1103/PhysRevApplied.15.054063 |
57. Nefedkin, N., Alù, A., & Krasnok, A. (2021). Quantum Embedded Superstates. Advanced Quantum Technologies, 4(6), 2000121. https://doi.org/10.1002/QUTE.202000121 |
58. Rasmussen, C., Quan, L., & Alù, A. (2021). Acoustic nonreciprocity. Journal of Applied Physics, 129(21), 210903. https://doi.org/10.1063/5.0050775 |
59. Kawaguchi, Y., Li, M., Chen, K., Menon, V., Alù, A., & Khanikaev, A. B. (2021). Optical isolator based on chiral light-matter interactions in a ring resonator integrating a dichroic magneto-optical material. Applied Physics Letters, 118(24), 241104. https://doi.org/10.1063/5.0057558 |
60. Guddala, S., Kawaguchi, Y., Komissarenko, F., Kiriushechkina, S., Vakulenko, A., Chen, K., Alù, A., M. Menon, V., & Khanikaev, A. B. (2021). All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides. Nature Communications 2021 12:1, 12(1), 1–9. https://doi.org/10.1038/s41467-021-24138-0 |
61. Krasnok, A., Alú, A., Jankovic, N., Sakotic, Z., & Jankovic, N. (2021). Topological scattering singularities and embedded eigenstates for polarization control and sensing applications. Photonics Research, Vol. 9, Issue 7, Pp. 1310-1323, 9(7), 1310–1323. https://doi.org/10.1364/PRJ.424247 |
62. Li, H., Mekawy, A., & Alù, A. (2021). Gain-Free Parity-Time Symmetry for Evanescent Fields. Physical Review Letters, 127(1), 014301. https://doi.org/10.1103/PhysRevLett.127.014301 |
63. Mazor, Y., Cotrufo, M., & Alù, A. (2021). Unitary Excitation Transfer between Coupled Cavities Using Temporal Switching. Physical Review Letters, 127(1), 013902. https://doi.org/10.1103/PhysRevLett.127.013902 |
64. Li, M., Sinev, I., Benimetskiy, F., Ivanova, T., Khestanova, E., Kiriushechkina, S., Vakulenko, A., Guddala, S., Skolnick, M., Menon, V. M., Krizhanovskii, D., Alù, A., Samusev, A., & Khanikaev, A. B. (2021). Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nature Communications 2021 12:1, 12(1), 1–10. https://doi.org/10.1038/s41467-021-24728-y |
65. Alù, A., Kim, S., Ni, X., & Alù, A. (2021). Topological insulator in two synthetic dimensions based on an optomechanical resonator. Optica, Vol. 8, Issue 8, Pp. 1024-1032, 8(8), 1024–1032. https://doi.org/10.1364/OPTICA.430821 |
66. Chen, K., Weiner, M., Li, M., Ni, X., Alù, A., & Khanikaev, A. B. (2021). Nonlocal topological insulators: Deterministic aperiodic arrays supporting localized topological states protected by nonlocal symmetries. Proceedings of the National Academy of Sciences, 118(34), 2021. https://doi.org/10.1073/PNAS.2100691118 |
67. Rasmussen, C., & Alù, A. (2021). Non-Foster acoustic radiation from an active piezoelectric transducer. Proceedings of the National Academy of Sciences, 118(30). https://doi.org/10.1073/PNAS.2024984118 |
68. Farhat, M., Chen, P.-Y., Amin, M., Alù, A., & Wu, Y. (2021). Transverse acoustic spin and torque from pure spinning of objects. Physical Review B, 104(6), L060104. https://doi.org/10.1103/PhysRevB.104.L060104 |
69. Ma, W., Hu, G., Hu, D., Chen, R., Sun, T., Zhang, X., Dai, Q., Zeng, Y., Alù, A., Qiu, C.-W., & Li, P. (2021). Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 2021 596:7872, 596(7872), 362–366. https://doi.org/10.1038/s41586-021-03755-1 |
70. Cotrufo, M., Mann, S. A., Moussa, H., & Alu, A. (2021). Nonlinearity-Induced Nonreciprocity – Part II. IEEE Transactions on Microwave Theory and Techniques, 69(8), 3584–3597. https://doi.org/10.1109/TMTT.2021.3082192 |
71. Cotrufo, M., Mann, S. A., Moussa, H., & Alu, A. (2021). Nonlinearity-Induced Nonreciprocity – Part I. IEEE Transactions on Microwave Theory and Techniques, 69(8), 3569–3583. https://doi.org/10.1109/TMTT.2021.3079250 |
The following is a complete list of journal papers published in this second year of effort. They consist of over 120 journal papers published in several high-profile journals, including Science, Nature, and PNAS. Our work has been featured on 3 journal covers this year (Fig. 1), in extensive press coverage, and as 6 Editor’s Picks. This outstanding record continues the high level of research productivity enabled by this Collaboration.
Fig. 1. Journal covers highlighting our work published in this second year of effort (see list below)
1. Q. Zhang, Q. Ou, G. Si, G. Hu, S. Dong, Y. Chen, J. Ni, C. Zhao, M. S. Fuhrer, Y. Yang, A. Alù, R. Hillenbrand, and C. W. Qiu, (2022). Unidirectional Excited Phonon Polaritons in High-Symmetry Orthorhombic Crystals, Science Advances, Vol. 8, No. 30, eabn9774 (8). |
2. M. Wang, G. Hu, S. Chand, M. Cotrufo, Y. Abate, K. Watanabe, T. Taniguchi, G. Grosso, C. W. Qiu, and A. Alù, (2022). Spin-Orbit-Locked Hyperbolic Polariton Vortices Carrying Reconfigurable Topological Charges, E-Light, Vol. 2, No. 12 (11). |
3. T. Shi, Z. L. Deng, X. Zeng, G. Geng, Y. Zeng, G. Hu, A. Overvig, J. Li, C. W. Qiu, A. Alù, Y. S. Kivshar, and X. Li, (2022). Chiral Metasurfaces with Maximal Tunable Chiroptical Response Driven by Bound States in the Continuum, Nature Communications, Vol. 13, No. 4111 (8). |
4. Y. W. Tsai, Y. T. Wang, E. Galiffi, A. Alù, and T. J. Yen, (2022). Surface-Wave Coupling in Double Floquet Sheets Supporting Phased Temporal Wood Anomalies,” Nanophotonics, Vol. 11, No. 15, pp. 3509-3517. https://doi.org/10.1515/nanoph-2022-0253 |
5. A. Alù, “Nonlinear Topological Photonics,” Journal of Physics: Photonics, in H. Price, Y. Chong, A. Khanikaev, H. Schomerus, L. J. Maczewsky, M. Kremer, M. Heinrich, A. Szameit, O. Zilberberg, Y. Yang, B. Zhang, A. Alù, R. Thomale, I. Carusotto, P. St-Jean, A. Amo, A. Dutt, L. Yuan, S. Fan, X. Yin, C. Peng, T. Ozawa, and A. Blanco-Redondo, “Roadmap on Topological Photonics,” Vol. 4, No. 3, 032501 (45 pages), July (2022). (invited paper) |
6. F. B. Arango, F. Alpeggiani, D. Conteduca, A. Opheij, A. Chen, M. I. Abdelrahman, T. Krauss, A. Alù, F. Monticone, and L. Kuipers, (2022). Cloaked Near-Field Probe for Non-Invasive Near-Field Optical Microscopy, Optica, Vol. 9, No. 7, pp. 684-691. https://doi.org/10.48550/arXiv.2201.00266 |
7. R. E. Jacobsen, A. Krasnok, S. Arslanagić, A. V. Lavrinenko, and A. Alù, (2022). Boundary-Induced Embedded Eigenstate in a Single Resonator for Advanced Sensing, ACS Photonics, Vol. 9, No. 6, pp. 1936-1943. https://doi.org/10.1021/acsphotonics.1c01840 |
8. Z. L. Deng, F. J. LI, H. Li, X. Li, and A. Alù, (2022). Extreme Diffraction Control in Metagratings Leveraging Bound States in the Continuum and Exceptional Points, Laser and Photonics Reviews, Vol. 16, No. 6, 2100617 (6). https://doi.org/10.1002/lpor.202100617 |
9. A. Nagulu, X. Ni, A. Kord, M. Tymchenko, S. Garikapati, A. Alù, and H. Krishnaswamy, (2022). Chip-Scale Floquet Topological Insulators for 5G Wireless Systems, Nature Electronics, Vol. 5, pp. 300-309. https://doi.org/10.1038/s41928-022-00751-9 |
10. M. Markowitz, M. Cotrufo, Y. Zhou, K. Stensvad, C. Schardt, A. Overvig, and A. Alù, (2022). Resonant Waveguide Gratings for Augmented Reality, Optics Express, Vol. 30, No. 12, pp. 20469-20481. |
11. Y. G. Peng, Y. Mazor, and A. Alù, (2022). Fundamentals of Acoustic Willis Media, Wave Motion, Vol. 112, 102930 (10). https://doi.org/10.1016/j.wavemoti.2022.102930 |
12. C. L. Holloway, N. Prajapati, A. B. Artusio-Glimpse, S. Breweger, M. T. Simons, Y. Kasahara, A. Alù, and R. W. Ziolkowski, (2022). Rydberg Atom-Based Field Sensing Enhancement Using a Split-Ring Resonator,” Applied Physics Letters, Vol. 120, 204001 (6). https://doi.org/10.1063/5.0088532 |
13. S. Yin, E. Galiffi, and A. Alù, (2022). Floquet Metamaterials, E-Light, Vol. 2, No. 8 (13). https://doi.org/10.1186/s43593-022-00015-1 |
14. S. Yves, M. I. N. Rosa, Y. Guo, M. Gupta, M. Ruzzene, and A. Alù, (2022). Moiré-Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces,” Advanced Science, Vol. 9, No. 13, 2200181 (8). https://doi.org/10.1021/acs.nanolett.9b05319 |
15. S. Yves, M. I. N. Rosa, Y. Guo, M. Gupta, M. Ruzzene, and A. Alù, (2022). Moiré-Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces, Advanced Science, Vol. 9, No. 13, 2200181 (8). https://doi.org/10.1021/acs.nanolett.9b05319 |
16. H. Li, S. Yin, and A. Alù, (2022). Nonreciprocity and Faraday Rotation at Time Interfaces, Physical Review Letters, Vol. 128, No. 17, 173901 (7). https://doi.org/10.1103/PhysRevLett.128.173901 |
17. X. Shu, A. Li, G. Hu, J. Wang, A. Alù, and L. Chen, (2022). Encirclement of an Exceptional Point for Highly Efficient and Compact Chiral Mode Converters, Nature Communications, Vol. 13, 2123 (6). https://doi.org/10.1038/s41467-022-29777-5 |
18. J. Fang, K. Yao, T. Zhang, M. Wang, T. Jiang, S. Huang, B. A. Korgel, M. Terrones, A. Alù, and Y. Zheng, (2022). Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS2,” Advanced Materials, Vol. 34, No. 15, 2108721 (6). https://doi.org/10.1002/adma.202108721 |
19. G. Xu, Y. Yang, X. Zhou, H. Chen, A. Alù, and C. W. Qiu, (2022). Diffusive Topological Transport in Spatiotemporal Thermal Lattices, Nature Physics, Vol. 18, pp. 450-456.https://doi.org/10.1038/s41567-021-01493-9 |
20. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alù, W. Cai, and A. Adibi, (2022). Electrically Driven Reprogrammable Phase-Change Metasurface Reaching 80% Efficiency, Nature Communications, Vol. 13, No. 1696 (11). https://doi.org/10.1038/s41467-022-29374-6 |
21. S. Yin, and A. Alù, (2022). Efficient Phase Conjugation in a Space-Time Leaky Waveguide, ACS Photonics, Vol. 9, No. 3, pp. 979-984. https://doi.org/10.1021/acsphotonics.1c01836 |
22. Y. Kawaguchi, A. Alù, and A. B. Khanikaev, (2022). Non-Reciprocal Parity-Time Symmetry Breaking Based on Magneto-Optical and Gain/Loss Double Ring Resonators, Optical Materials Express, Vol. 12, No. 4, pp. 1453-1460. https://doi.org/10.1364/OME.450821 |
23. L. Huang, A. Krasnok, A. Alù, Y. Yu, D. Neshev, and A. E Miroshnichenko, (2021). Enhanced Light-Matter Interaction in Two-Dimensional Transition Metal Dichalcogenides, Progress in Physics, Vol. 85, No. 4, 046401 (75). https://doi.org/10.1088/1361-6633/ac45f9 |
24. R. Duggan, H. Moussa, D. L. Sounas, and A. Alù, (2022). Stability Bounds on Superluminal Propagation in Active Structures, Nature Communications, Vol. 13, No. 1115 (10). https://doi.org/10.1038/s41467-022-28713-x |
25. J. Soric, Y. Ra’di, D. Farfan, and A. Alù, (2022). Radio-Transparent Dipole Antenna Based on a Metasurface Cloak, Nature Communications, Vol. 13, No. 1114 (8). https://doi.org/10.1038/s41467-022-28714-w |
26. N. Nefedkin, M. Cotrufo, A. Krasnok, and A. Alù, (2022). Dark-State Induced Quantum Nonreciprocity, Advanced Quantum Technologies, Vol. 5, No. 3, 2100112 (17). https://doi.org/10.1002/qute.202100112 |
27. N. C. Passler, X. Ni, G. Hu, J. R. Matson, G. Carini, M. Wolf, M. Schubert, A. Alù, J. D. Caldwell, T. G. Folland, and A. Paarmann, (2022). Hyperbolic Shear Polaritons in Low-Symmetry Crystals,” Nature, Vol. 602, pp. 599-602. https://doi.org/10.1038/s41586-021-04328-y |
28. H. Goh, and A. Alù, Nonlocal Scatterer for Compact Wave-Based Analog Computing, (2022). Physical Review Letters, Vol. 128, No. 7, 073201. https://doi.org/10.1103/PhysRevLett.128.073201 |
29. C. Qin, A. Alù, and Z. J. Wong, (2022). Pseudo-Spin Orbit Coupling for Chiral Light Routing in Gauge-Flux-Biased Coupled Microring Resonator Arrays, ACS Photonics, Vol. 9, No. 2, pp. 586-596. https://doi.org/10.1021/acsphotonics.1c01561 |
30. M. Khatoniar, R. Bushati, A. Mekawy, F. Dirnberger, A. Alù, and V. M. Menon, (2022). Relaxing Symmetry Rules for Nonlinear Optical Interactions in Van der Waals Materials via Strong Light–Matter Coupling, ACS Photonics, Vol. 9, No. 2, pp. 503-510. https://doi.org/10.1021/acsphotonics.1c01242 |
31. E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza, A. Alù, and J. B. Pendry, (2022). Photonics of Time-Varying Media, Advanced Photonics, Vol. 4, No. 1, 014002 (32). https://doi.org/10.1117/1.AP.4.1.014002 |
32. Q. Xu, X. Su, X. Zhang, L. Dong, L. Liu, Y. Shi, Q. Wang, M. Kang, A. Alù, S. Zhang, J. Han, and W. Zhang, (2022). Mechanically Reprogrammable Pancharatnam-Berry Metasurface for Microwaves, Advanced Photonics, Vol. 4, No. 1, 016002 (11). https://doi.org/10.1117/1.AP.4.1.016002 |
33. Y. Radi, and A. Alù, (2021). Metagratings for Efficient Wavefront Manipulation,” IEEE Photonics Journal, Vol. 14, No. 1, No. 2207513 (13). doi: 10.1109/JPHOT.2021.3136202. |
34. A. Krasnok, and A. Alù, (2022). Low-Symmetry Nanophotonics, ACS Photonics, Vol. 9, No. 1, pp. 2-24. https://doi.org/10.1021/acsphotonics.1c00968 |
35. J. Li, Y. Li, P. C. Cao, M. Qi, X. Zheng, Y. G. Peng, B. Li, X. F. Zhu, A. Alù., H. Chen, and C. W. Qiu, (2022). Reciprocity of Thermal Diffusion in Time-Modulated Systems,” Nature Communications, Vol. 13, No. 167 (8). https://doi.org/10.1038/s41467-021-27903-3 |
36. Z. L. Deng, T. Shi, A. Krasnok, X. Li, and A. Alù, (2022). Observation of Localized Magnetic Plasmon Skyrmions, Nature Communications, Vol. 13, No. 8 (7). https://doi.org/10.1038/s41467-021-27710-w |
37. A. Alù, “Space-Time Metasurfaces,” in M. Piccardo, V. Ginis, A. Forbes, S. Mahler, A. A. Friesem, N. Davidson, H. Ren, A. H. Dorrah, F. Capasso, F. T. Dullo, B. S. Ahluwalia, A. Ambrosio, S. Gigan, N. Treps, M. Hiekkamäki, R. Fickler, M. Kues, D. Moss, R. Morandotti, J. Riemensberger, T. J. Kippenberg, J. Faist, G. Scalari, N. Picqué, T. W. Hänsch, G. Cerullo, C. Manzoni, L. A. Lugiato, M. Brambilla, L. Columbo, A. Gatti, F. Prati, A. Shiri, A. F. Abouraddy, A. Alù, E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Roadmap on Multimode Light Shaping,” Journal of Optics, Vol. 24, No. 1, 013001 (53). December (2021). |
38. A. Krasnok, N. Nefedkin, and A. Alù, (2021). Parity-Time Symmetry and Exceptional Points,” IEEE Antennas and Propagation Magazine, Vol. 63, No. 3, pp. 110-121. doi: 10.1109/MAP.2021.3115766. |
39. A. Kord, and A. Alù, (2021). Magnetless Circulators Based on Synthetic Angular-Momentum Bias, IEEE Antennas and Propagation Magazine, Vol. 63, No. 6, pp. 51-61. doi: 10.1109/MAP.2020.3043437. |
40. Y. K. Chiang, L. Quan, Y. Peng, S. Sepehrirahnama, S. Oberst, A. Alù, and D. A. Powell, (2021). Scalable Metagrating for Efficient Ultrasonic Focusing, Physical Review Applied, Vol. 16, No. 6, 064014 (9). https://doi.org/10.1103/PhysRevApplied.16.064014 |
41. J. Zhang, B. Peng, S. Kim, F. Monifi, X. Jiang, Y. Li, P. Yu, L. Liu, Y. X. Liu, A. Alù, and L. Yang, (2021). Optomechanical Dissipative Solitons, Nature, Vol. 600, pp. 75-80. https://doi.org/10.1038/s41586-021-04012-1 |
42. A. Hofstrand, M. Cotrufo, and A. Alù, (2021). Nonreciprocal Pulse Shaping and Chaotic Modulation with Asymmetric Noninstantaneous Nonlinear Resonators, Physical Review A, Vol. 104, No. 5, 053529 (8). |
43. G. Hu, C. W. Qiu, W. Ma, R. Chen, X. Zhang, P. Li, D. Hu, Q. Dai, and A. Alù, (2021). Polaritonics on Viking Sunstones,” Optics and Photonics News, Vol. 32, No. 12, p. 49. doi: 10.1038/news.2011.58. |
44. M. Pascale, S. A. Mann, C. Forestiere, and A. Alù, (2021). Bandwidth of Singular Plasmonic Resonators in Relation to the Chu Limit,” ACS Photonics, Vol. 8, No. 11, pp. 3249-3260. https://doi.org/10.1021/acsphotonics.1c01084 |
45. Z. X. Chen, Y. G. Peng, H. X. Li, J. J. Liu, Y. J. Ding, B. Liang, X. F. Zhu, Y. Q. Lu, J. C. Cheng, and A. Alù, (2021). Efficient Nonreciprocal Mode Transitions in Spatiotemporally Modulated Acoustic Metamaterials, Science Advances, Vol. 7, No. 45, eabj1198 (8). DOI: 10.1126/sciadv.abj1198 |
46. S. Ramezanpour, A. Bogdanov, A. Alù, and Y. Radi, (2021). Generalization of Exceptional Point Conditions in Perturbed Coupled Resonators,” Physical Review B, Vol. 104, No. 20, 205405 (8). https://doi.org/10.1103/PhysRevB.104.205405 |
47. Z. Xiao, and A. Alù, (2021). Tailoring Exceptional Points in a Hybrid PT-Symmetric and Anti-PT-Symmetric Scattering System, Nanophotonics, Vol. 10, No. 14, pp. 3723-3733. |
48. C. Valagiannopoulos, A. Sarsen, and A. Alù, (2021). Angular Memory of Photonic Metasurfaces,” IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, pp. 7720-7728. doi: 10.1109/TAP.2021.3083806. |
49. A. Alù, C. Daraio, P. Deymier, and M. Ruzzene, (2021). “Topological Acoustics,” Acoustics Today, Vol. 17, No. 3, pp. 13-21. |
50. S. Guddala, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, M. Li, V. M. Menon, A. Alù, and A. B. Khanikaev, (2021). Topological Phonon-Polariton Funneling in Midinfrared Polaritonic Metasurfaces,” Science, Vol 374, No. 6564, pp. 225-227. |
51. H. Li, S. Yin, E. Galiffi, and A. Alù, (2021). Temporal Parity-Time Symmetry for Extreme Energy Transformations,” Physical Review Letters, Vol. 127, 153903 (7). https://doi.org/10.1103/PhysRevLett.127.153903 |
52. S. Yves, and A. Alù, (2021). Extreme Anisotropy and Dispersion Engineering in Locally Resonant Acoustic Metamaterials, Journal of the Acoustic Society of America, Special Issue on Additive Manufacturing, Vol. 150, pp. 2040-2045. https://doi.org/10.1121/10.0006237 |
53. S. A. Mann, and A. Alù, (2021). Broadband Topological Slow Light through Brillouin-Zone Winding,” Physical Review Letters, Vol. 127, No. 12, 123601 (6). https://doi.org/10.1103/PhysRevLett.127.123601 |
54. Q. Zhang, G. Hu, W. Ma, P. Li, A. Krasnok, R. Hillebrand, A. Alù, and C. W. Qiu, (2021). Interface Nano-Optics with Van der Waals Polaritons, Nature, Vol. 597, pp. 187-195. https://doi.org/10.1038/s41586-021-03581-5 |
55. M. Miscuglio, Y. Gui, X. Ma, Z. Ma, S. Sun, T. El Ghazawi, T. Itoh, A. Alù, and V. J. Sorger, (2021). Approximate Analog Computing with Metatronic Circuits,” Communications Physics, Vol. 4, 196(11). https://doi.org/10.1038/s42005-021-00683-4 |
56. K. Chen, M. Weiner, M. Li, X. Ni, A. Alù, and A. B. Khanikaev, (2021). Nonlocal Topological Insulators: Deterministic Aperiodic Arrays Supporting Localized Topological States Protected by Nonlocal Symmetries,” Proceedings of the National Academy of Sciences, Vol. 118, No. 34, e2100691118. https://doi.org/10.1073/pnas.2100691118 |
57. M. Farhat, P. Y. Chen, M. Amin, A. Alù, and Y. Wu, (2021). Transverse Acoustic Spin and Torque from Pure Spinning of Objects, Physical Review B (Letter), Vol. 104, L060104. https://doi.org/10.1103/PhysRevB.104.L060104 |
58. W. Ma, G. Hu, D. Hu, R. Chen, T. Sun, X. Zhang, Q. Dai, Y. Zeng, A. Alù, C. W. Qiu, and P. Li, (2021). Ghost Hyperbolic Surface Polaritons in Bulk Anisotropic Crystals, Nature, Vol. 596, pp. 362-366. https://doi.org/10.1038/s41586-021-03755-1 |
59. F. Shafiei, T. Orzali, A. Vert, M. A. Miri, P. Y. Hung, M. H. Wong, A. Alù, G. Bersuker, M. C. Downer, (2021). Detection of Subsurface, Nanometer-Scale Crystallographic Defects by Nonlinear Light Scattering and Localization, Advanced Optical Materials, Vol. 9, No. 16, 2002252. |
60. N. Janković, S. Ilić, V. Bengin, S. Birgermajer, V. Radonić, and A. Alù, (2021). Acoustic Spoof Surface Plasmon Polaritons for Filtering, Isolation and Sensing,” Reports in Physics, Vol. 28, 104645. https://doi.org/10.1016/j.rinp.2021.104645 |
61. M. Cotrufo, S. A. Mann, H. Moussa, and A. Alù, (2021). Nonlinearity-Induced Nonreciprocity – Part II, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 8, pp. 3584-3597. doi: 10.1109/TMTT.2021.3082192. |
62. M. Cotrufo, S. A. Mann, H. Moussa, and A. Alù, (2021). Nonlinearity-Induced Nonreciprocity – Part I, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 8, pp. 3569-3583. doi: 10.1109/TMTT.2021.3079250. |
63. A. Monti, A. Alù, A. Toscano, and F. Bilotti, (2021). Design of High-Q Passband Filters Implemented Through Multipolar All-Dielectric Metasurfaces, IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, pp. 5142-5147. doi: 10.1109/TAP.2020.3045795. |
64. C. M. Bender, and D. W. Hook, (2021). PT-Symmetric Classical Mechanics, Journal of Physics.: Conference Series, 2038,012003. https://doi.org/10.48550/arXiv.2103.04214 |
65. A. Felski, C. M. Bender, S. P. Klevansky, and S. Sarkar, (2021). Towards Perturbative Renormalization of φ2(iφ)ε Quantum Field Theory, Physical Review D 104, 085011. https://doi.org/10.1103/PhysRevD.104.085011 |
66. C. M. Bender, A. Felski, S. P. Klevansky, and S. Sarkar, (2021). PT Symmetry and Renormalization in Quantum Field Theory,” Journal of Physics.: Conference Series, 2038, 012004. https://doi.org/10.48550/arXiv.2103.14864 |
67. C. M. Bender,“PT Symmetry,” To be published in Time and Science, ed. by R. Lestienne and P. Harris September (2022). |
68. C. M. Bender and J. Komijani, (2022) Addendum: Painleve Equation and PT-symmetric Hamiltonians (2015 J. Phys. A: Math.Theor.48, 475202), Journal of Physics A: Mathematical and Theoretical, 55, 109401. https://doi.org/10.1088/1751-8113/48/47/475202 |
69. C. M. Bender, (2021). “Calculation of Green’s Functions in PT-Symmetric Quantum Field Theory,” World Scientific, From the Past to the Future, 121-137 https://doi.org/10.1142/9789811231124_0006 |
70. C. M. Bender and S. P. Klevansky,“Dyson-Schwinger Equations and Polynomial Approximations” (in preparation). |
71. C. M. Bender and D. W. Hook, “Detailed Analysis of PT-symmetric Classical Mechanics” (in preparation). |
72. Li S, Librandi G, Yao Y, Richard AJ, Schneider-Yamamura A, Aizenberg J, Bertoldi K. (2021) “Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures.” Advanced Materials. |
73. G. Xu, W. Li, X. Zhou, H. Li, Y. Li, S. Fan, S. Zhang, D. N. Christodoulides, and C.-W. Qiu, (2022). Observation of Weyl Exceptional Rings in Thermal Diffusion, Proceedings of the National Academy of Sciences, 119 (15), e2110018119. https://doi.org/10.1073/pnas.2110018119 |
74. F. O. Wu, Q. Zhong, H. Ren, P. S. Jung, K. G. Makris, and D. N. Christodoulides, (2022). Thermalization of Light’s Orbital Angular Momentum in Nonlinear Multimode Waveguide Systems, Physical Review Letters, 128 (12), 123901. https://doi.org/10.1103/PhysRevLett.128.123901 |
75. M. A. Selim, F. O. Wu, H. Ren, M. Khajavikhan, and D. Christodoulides, (2022). Thermodynamic Description of the Near- and Far-Field Intensity Patterns Emerging from Multimode Nonlinear Waveguide Arrays, Physical Review A 105 (1), 013514. https://doi.org/10.1103/PhysRevA.105.013514 |
76. G. G. Pyrialakos, H. Ren, P. S. Jung, M. Khajavikhan, and D. N. Christodoulides, (2022). Thermalization Dynamics of Nonlinear Non-Hermitian Optical Lattices, Physical Review Letters 128 (21), 213901. https://doi.org/10.1103/PhysRevLett.128.213901 |
77. G. G. Pyrialakos, J. Beck, M. Heinrich, L. J. Maczewsky, N. V. Kantartzis, M. Khajavikhan, A. Szameit, and D. N. Christodoulides, (2022). Bimorphic Floquet Topological Insulators,” Nature Materials 21, 634. https://doi.org/10.1038/s41563-022-01238-w |
78. H. Pourbeyram, P. Sidorenko, F. O. Wu, N. Bender, L. Wright, D. N. Christodoulides, and F. Wise, (2022). Direct Observations of Thermalization to a Rayleigh–Jeans Distribution in Multimode Optical Fibres,” Nature Physics 18, 685. https://doi.org/10.1038/s41567-022-01579-y |
79. H. Nasari, G. Lopez-Galmiche, H. E. Lopez-Aviles, A. Schumer, A. U. Hassan, Q. Zhong, S. Rotter, P. LiKamWa, D. N. Christodoulides, and M. Khajavikhan, (2022). Observation of Chiral State Transfer Without Encircling an Exceptional Point, Nature 605 (7909), 256. https://doi.org/10.1038/s41586-022-04542-2 |
80. H. Luo, Y. Jia, F. Tian, M. Khajavikhan, and D. Christodoulides, (2022). Network Analysis of Weyl Semimetal Photogalvanic Systems,” Optics Letters, 47 (10), 2450 https://doi.org/10.1364/OL.452929 |
81. P. S. Jung, M. Parto, G. G. Pyrialakos, H. Nasari, K. Rutkowska, M. Trippenbach, M. Khajavikhan, W. Krolikowski, and D. N. Christodoulides, “Optical Thouless Pumping Transport and Nonlinear Switching in a Topological Low-Dimensional Discrete Nematic Liquid Crystal Array,” Physical Review A, 105 (1), 013513 (2022). https://doi.org/10.1103/PhysRevA.105.013513 |
82. H. Haig, P. Sidorenko, A. Dhar, N. Choudhury, R. Sen, D. Christodoulides, and F. Wise, (2022). Multimode Mamyshev Oscillator, Optics Letters, 47 (1), 46. https://doi.org/10.1364/OL.447208 |
83. Z. Xiong, F. O. Wu, J.-T. Lü, Z. Ruan, D. N. Christodoulides, and Y. Chen,(2022). K-space Thermodynamic Funneling of Light via Heat Exchange, Physical Review A 105 (3), 033529. https://doi.org/10.1103/PhysRevA.105.033529 |
84. X. Wen, X. Zhu, A. Fan, W. Y. Tam, J. Zhu, H. W. Wu, F. Lemoult, M. Fink, and J. Li, “Unidirectional Amplification with Acoustic Non-Hermitian Space−time Varying Metamaterial,” Communications Physics, Vol. 5, No. 1, 1-7, (2022). |
85. M. Benzaouia, et al., (2022). Analytical Design Criteria for Designing Multiresonance Filters in Scattering Systems, with Application to Microwave Metasurfaces,” Physical Review Applied, vol. 17, p. 034018. https://doi.org/10.1103/PhysRevApplied.17.034018 |
86. M. Benzaouia, J. D. Joannopoulos, S. G. Johnson, and A. Karalis, (2021). Quasi-normal Mode Theory of the Scattering Matrix, Enforcing Fundamental Constraints for Truncated Expansions,” Physical Review Research, vol. 3, p. 033228. https://doi.org/10.1103/PhysRevResearch.3.033228 |
87. S. Fisher, R. Pestourie, and S. G. Johnson, (2022). Efficient Perturbative Framework for Coupling of Radiative and Guided Modes, Physical Review A, 106, 013507. https://doi.org/10.1103/PhysRevA.106.013507 |
88. A. M. Hammond, A. Oskooi, M. Chen, Z. Lin, S. G. Johnson, and S. E. Ralph,(2022). High-performance Hybrid Time/Frequency-domain Topology Optimization for Large-scale Photonics Inverse Design, Optics Express, vol. 30, no. 3, pp. 4467–4491. https://doi.org/10.1364/OE.442074 |
89. K. Chen and A. B. Khanikaev, (2022). Non-Hermitian C=2 Chern Insulator Protected by Generalized Rotational Symmetry,” Physical Review B, 105, L081112. https://doi.org/10.1103/PhysRevB.105.L081112 |
90. I. Sinev, M. Li, F. Benimetskiy, T. Ivanova, S. Kiriushechkina, A. Vakulenko, S. Guddala, D. Krizhanovskii, A. Samusev, A. B. Khanikaev, (2021). Strong Light-matter Coupling in Topological Metasurfaces Integrated with Transition Metal Dichalcogenides,” Journal of Physics 1, 2015 012142. |
91. S. Guddala, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, M. Li, V. M. Menon, A Alù, A. B. Khanikaev, (2021). Topological Phonon-polariton Funneling in Midinfrared Metasurfaces,” Science, 374, 225-227. /doi/10.1126/sciadv.abn9774 |
92. M. Li, I. Sinev, F. Benimetskiy, T. Ivanova, E. Khestanova, S. Kiriushechkina, A. Vakulenko, S. Guddala, M. Skolnick, V. M. Menon, D. Krizhanovskii, A. Alù, A. Samusev, A. B. Khanikaev, (2021). Experimental Observation of Topological Z2 Exciton-polaritons in Transition Metal Dichalcogenide Monolayers, Nature Communications, 12, 1-10. https://doi.org/10.1038/s41467-021-24728-y |
93. S. Guddala, Y. Kawaguchi, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, K. Chen, A. Alù, V. M. Menon, A. B. Khanikaev, (2021). All-optical Nonreciprocity Due to Valley Polarization Pumping in Transition Metal Dichalcogenides, Nature Communications, 12, 1-9. https://doi.org/10.1038/s41467-021-24138-0 |
94. K. Chen, M. Weiner, M. Li, X. Ni, A. Alù, A. B. Khanikaev, (2021). Nonlocal Topological Insulators: Deterministic Aperiodic Arrays Supporting Localized Topological States Protected by Nonlocal Symmetries, Proceedings of the National Academy of Sciences 118, e2100691118. https://doi.org/10.1073/pnas.2100691118 |
95. R. V. Kohn and R. Venkatraman, (2022). Complex Analytic Dependence on the Dielectric Permittivity in ENZ Materials: The Photonic Doping Example, Comm Pure Appl Math. https://arxiv.org/abs/2203.08911 |
96. S. Alama, L. Bronsard, X. Lamy, and R. Venkatraman, (2022). Far-field Expansions for Harmonic Maps and the Electrostatics Analogy for Nematic Suspensions, Journal of Nonlinear Science. https://arxiv.org/abs/2202.12794 |
97. I. Fonseca, R. Ferreira, and R. Venkatraman, (2022). Variational homogenization: Old and New,” to appear in Proceedings of the International Congress of Mathematicians. |
98. R. Kononchuk, J. Cai, F. Ellis, R. Thevamaran, T. Kottos,(2022). Exceptional-point-based Accelerometers with Enhanced Signal-to-noise Ratio,” Nature, 607, p. 697–702. https://doi.org/10.1038/s41586-022-04904-w |
99. William Tuxbury, Rorion Kononchuk, Tsampikos Kottos, (2022). Non-resonant Exceptional Points as Enablers of Noise-resilient Sensors, Communications Physics, 5. https://doi.org/10.1038/s42005-022-00973-5 |
100. C. Shi, T. Kottos, B. Shapiro, (2021). Controlling Optical Beam Thermalization via Band-gap Engineering, Physical Review Research, Vol. 3, 033219. https://doi.org/10.1103/PhysRevResearch.3.033219. |
101. Y. X. Li, D. Cohen, T. Kottos,(2022). Enforcing Levy Relaxation for Multi-mode Fibers with Correlated Disorder, New Journal of Physics, Vol. 24, 053012. https://doi.org/10.1088/1367-2630/ac6318 |
102. S. Suwunnarat, Y. Tang, M. Reisner, F. Mortessagne, U. Kuhl, T. Kottos, (2022). Non-linear Coherent Perfect Absorption in the Proximity of Exceptional Points, Communications Physics Vol. 5, 5. https://doi.org/10.1038/s42005-021-00782-2. |
103. A. Gupta, A. Kurnosov, T. Kottos, R. Thevamaran, (2022). Boosting of Purcell Enhancement Factor Near Exceptional Point Degeneracies in an Elastodynamic Metamaterial, https://arxiv.org/abs/2201.10744 |
104. S. A. Lannebère, D. E. Fernandes, T. A. Morgado, M. G. Silveirinha, (2022). Nonreciprocal and Non-Hermitian Material Response Inspired by Semiconductor Transistors, Physical Review Letters, 128, 013902. https://doi.org/10.1103/PhysRevLett.128.013902 |
105. E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza, A. Alù, J. B. Pendry, Photonics of Time-Varying Media, Advanced Photonics, 4(1), 014002 (2022). https://doi.org/10.1117/1.AP.4.1.014002. |
106. J. B. Pendry, P. A. Huidobro, M. G. Silveirinha, E. Galiffi, (2022). Crossing the Light Line, Nanophotonics, 11, 161–167. https://doi.org/10.48550/arXiv.2110.00956 |
107. F. R. Prudêncio, M. G. Silveirinha, (2021). “First Principles Calculation of the Topological Phases of the Photonic Haldane Model,” Symmetry, 13, 2229. https://doi.org/10.3390/sym13112229 |
108. S. V. Silva, D. E. Fernandes, T. A. Morgado, M. G. Silveirinha, (2022). Topological Pumping and Tamm States in Photonic Systems, Physical Review B, 105, 155133. https://doi.org/10.1103/PhysRevB.105.155133 |
109. D. E. Fernandes, R. A. M. Pereira, S. Lannebère, T. A. Morgado, M. G. Silveirinha, (2022). Experimental Verification of Ill-defined Topologies and Energy Sinks in Electromagnetic Continua, Advance Photonics, 4(3), 035003. https://doi.org/10.1117/1.AP.4.3.035003 |
110. D. E. Fernandes, M. G. Silveirinha, (2022). Role of Time-Reversal Symmetry in the Dynamical Response of “One-Way” Nonlinear Devices, Physical Review Applied, 18, 024002. https://doi.org/10.1103/PhysRevApplied.18.024002 |
111. F. R. Prudêncio, M. G. Silveirinha, (2021). Monopole Embedded Eigenstates in Nonlocal Plasmonic Nanospheres,” Applied Physic Letter, 119 (26), 261101. https://doi.org/10.1063/5.0077123 |
112. M. G. Silveirinha, N. Engheta, “Structuring Light with Near-Zero-Index Platforms,” submitted to J. Optics (2022). |
113. S. A. Lannebère, N. Engheta, M. G. Silveirinha, “Microscopic Models for Materials with a Transistor-like Response,” (in preparation). |
114. J. Serra, N. Engheta, M. G. Silveirinha, “Non-Hermitian Edge States in A Transistor-metamaterial,” (in preparation). |
115. Ming Han, Michel Fruchart, Colin Scheibner, Suriyanarayanan Vaikuntanathan, Juan J. de Pablo, Vincenzo Vitelli (2021). Fluctuating Hydrodynamics of Chiral Active Fluids, Nature Physics 17, 1260–1269. https://doi.org/10.1038/s41567-021-01318-9 |
116. Michel Fruchart, Ming Han, Colin Scheibner, Vincenzo Vitelli, (2022). The Odd Ideal Gas: Hall Viscosity and Thermal Conductivity from Non-Hermitian Kinetic Theory, https://arxiv.org/abs/2202.02037 |
117. Lara Braverman, Colin Scheibner, Bryan VanSaders, Vincenzo Vitelli, (2021). Topological Defects in Solids with Odd Elasticity, Physical Review Letters 127, 268001. https://doi.org/10.1103/PhysRevLett.127.268001 |
118. Yangyang Chen, Xiaopeng Li, Colin Scheibner, Vincenzo Vitelli, Guoliang Huang,(2021). Realization of Active Metamaterials with Odd Micropolar Elasticity, Nature Communications 12. https://doi.org/10.1038/s41467-021-26034-z |
119. Martin Brandenbourger, Colin Scheibner, Jonas Veenstra, Vincenzo Vitelli, Corentin Coulais,(2021). Limit Cycles Turn Active Matter into Robots. https://arxiv.org/abs/2108.08837 |
120. Michel Fruchart, Ryo Hanai, Peter B. Littlewood, Vincenzo Vitelli, (2021). Non-reciprocal Phase Transitions, Nature, 592, 363–369. https://doi.org/10.1038/d41586-021-00886-3 |
121. Hamed Abbaszadeh, Michel Fruchart, Wim van Saarloos, Vincenzo Vitelli,(2021). Liquid-crystal-based Topological Photonics, Proceedings of the National Academy of Sciences, 118, e2020525118. https://doi.org/10.1073/pnas.2020525118 |
122. Michel Fruchart, Claudia Yao, Vincenzo Vitelli, (2021). Systematic Generation of Hamiltonian Families with Dualities, https://arxiv.org/abs/2108.11138 |