Publications

This page will be updated periodically with published journal papers directly supported by the Simons Foundation.

Journal Publications

Our foundation-sponsored research publications in year one consisted of 85 journal papers published in several high-profile journals, including three Nature, nine Nature sub-journals, nine Physical Review Letters, three PNAS, three Optica, and two Proc. IEEE. Our work has been featured on eight journal covers this year, in four press releases, and it has been selected as Editor’s Pick three times.

collage of 8 science journal covers
Journal covers highlighting our work published in the past year (see complete list below)
1. Banerjee, D., Vitelli, V., Jülicher, F., & Surówka, P. (2021). Active Viscoelasticity of Odd Materials. Physical Review Letters, 126(13), 138001. https://doi.org/10.1103/PhysRevLett.126.138001
2. Abbaszadeh, H., Fruchart, M., Saarloos, W. van, & Vitelli, V. (2021). Liquid-crystal-based topological photonics. Proceedings of the National Academy of Sciences, 118(4), 2021. https://doi.org/10.1073/PNAS.2020525118
3. Fruchart, M., Hanai, R., Littlewood, P. B., & Vitelli, V. (2021). Non-reciprocal phase transitions. Nature 2021 592:7854, 592(7854), 363–369. https://doi.org/10.1038/s41586-021-03375-9
4. Fallah, A., Kiasat, Y., Silveirinha, M. G., & Engheta, N. (2021). Nonreciprocal guided waves in the presence of swift electron beams. Physical Review B, 103(21), 214303. https://doi.org/10.1103/PhysRevB.103.214303
5. Huidobro, P. A., Silveirinha, M. G., Galiffi, E., & Pendry, J. B. (2021). Homogenization Theory of Space-Time Metamaterials. Physical Review Applied, 16(1), 014044. https://doi.org/10.1103/PhysRevApplied.16.014044
6. Morgado, T. A., & Silveirinha, M. G. (2021). Active Graphene Plasmonics with a Drift-Current Bias. ACS Photonics, 8(4), 1129–1136. https://doi.org/10.1021/ACSPHOTONICS.0C01890
7. Fernández-Alcázar, L. J., Kononchuk, R., Li, H., & Kottos, T. (2021). Extreme Nonreciprocal Near-Field Thermal Radiation via Floquet Photonics. Physical Review Letters, 126(20), 204101. https://doi.org/10.1103/PhysRevLett.126.204101
8. Kononchuk, R., Feinberg, J., Knee, J., & Kottos, T. (2021). Enhanced avionic sensing based on Wigner’s cusp anomalies. Science Advances, 7(23). https://doi.org/10.1126/SCIADV.ABG8118
9. Mencagli, M. J., Sounas, D. L., Fink, M., & Engheta, N. (2021). Static-to-dynamic field conversion with time-varying media. https://arxiv.org/abs/2107.11420v1
10. Castaldi, G., Pacheco-Peña, V., Moccia, M., Engheta, N., & Galdi, V. (2021). Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials. Nanophotonics, 10(14), 3687–3699. https://doi.org/10.1515/NANOPH-2021-0231
11. Ramaniuk, A., Christodoulides, D. N., Assanto, G., Trippenbach, M., Jung, P. S., Krolikowski, W., Krolikowski, W., & Assanto, G. (2021). Scalar and vector supermode solitons owing to competing nonlocal nonlinearities. Optics Express, Vol. 29, Issue 6, Pp. 8015-8023, 29(6), 8015–8023. https://doi.org/10.1364/OE.417352
12. Christodoulides, D. N., Wise, F. W., Pourbeyram, H., & Wu, Y. (2021). Weak beam self-cleaning of femtosecond pulses in the anomalous dispersion regime. Optics Letters, Vol. 46, Issue 13, Pp. 3312-3315, 46(13), 3312–3315. https://doi.org/10.1364/OL.430926
13. Wu, F. O., Jung, P. S., Parto, M., Khajavikhan, M., & Christodoulides, D. N. (2020). Entropic thermodynamics of nonlinear photonic chain networks. Communications Physics 2020 3:1, 3(1), 1–7. https://doi.org/10.1038/s42005-020-00484-1
14. Zareei, A., Medina, E., & Bertoldi, K. (2021). Harnessing Mechanical Deformation to Reduce Spherical Aberration in Soft Lenses. Physical Review Letters, 126(8), 084301. https://doi.org/10.1103/PhysRevLett.126.084301
15. Li, S., Deng, B., Grinthal, A., Schneider-Yamamura, A., Kang, J., Martens, R. S., Zhang, C. T., Li, J., Yu, S., Bertoldi, K., & Aizenberg, J. (2021). Liquid-induced topological transformations of cellular microstructures. Nature 2021 592:7854, 592(7854), 386–391. https://doi.org/10.1038/s41586-021-03404-7
16. Castaldi, G., Pacheco-Peña, V., Moccia, M., Engheta, N., & Galdi, V. (2021). Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials. Nanophotonics. https://doi.org/10.1515/NANOPH-2021-0231
17. Mencagli, M. J., Sounas, D. L., Fink, M., & Engheta, N. (2021). Static-to-dynamic field conversion with time-varying media. https://arxiv.org/abs/2107.11420v1
18. Pacheco-Peña, V., & Engheta, N. (2021). Temporal metamaterials with gain and loss. https://arxiv.org/abs/2108.01007v1
19. Suwunnarat, S., Tang, Y., Reisner, M., Mortessagne, F., Kuhl, U., & Kottos, T. (2021). Towards a Broad-Band Coherent Perfect Absorption in systems without Scale-Invariance. https://arxiv.org/abs/2103.03668v1
20. Shi, C., Kottos, T., & Shapiro, B. (2021). Controlling optical beam thermalization via band-gap engineering. Physical Review Research, 3(3), 033219. https://doi.org/10.1103/PhysRevResearch.3.033219
21. Li, Y., Cohen, D., & Kottos, T. (2021). Enforcing Levy relaxation for multi-mode fibers with correlated disorder. https://arxiv.org/abs/2107.03028v1
22. Silveirinha, M. G. (2021). Time-Crystal Model of the Electron Spin. https://arxiv.org/abs/2107.12158v2
23. Bender, C. M., & Hook, D. W. (2021). $PT$-symmetric classical mechanics. PT Symmetry, 107–132. https://arxiv.org/abs/2103.04214v1
24. Felski, A., Bender, C. M., Klevansky, S. P., & Sarkar, S. (2021). Towards perturbative renormalization of <math xmlns. Physical Review D, 104(8), 085011. https://doi.org/10.1103/PhysRevD.104.085011
25. Bender, C. M., Felski, A., Klevansky, S. P., & Sarkar, S. (2021). PT Symmetry and Renormalisation in Quantum Field Theory. https://arxiv.org/abs/2103.14864v1
26. Nassar, H., Yousefzadeh, B., Fleury, R., Ruzzene, M., Alù, A., Daraio, C., Norris, A. N., Huang, G., & Haberman, M. R. (2020). Nonreciprocity in acoustic and elastic materials. Nature Reviews Materials 2020 5:9, 5(9), 667–685. https://doi.org/10.1038/s41578-020-0206-0
27. Zhang, Z., Kang, M., Zhang, X., Feng, X., Xu, Y., Chen, X., Zhang, H., Xu, Q., Tian, Z., Zhang, W., Krasnok, A., Han, J., & Alù, A. (2020). Coherent Perfect Diffraction in Metagratings. Advanced Materials, 32(36), 2002341. https://doi.org/10.1002/ADMA.202002341
28. Li, H., Moussa, H., Sounas, D., & Alù, A. (2020). Parity-time Symmetry Based on Time Modulation. Physical Review Applied, 14(3), 031002. https://doi.org/10.1103/PhysRevApplied.14.031002
29. Galiffi, E., Wang, Y.-T., Lim, Z., Pendry, J. B., Alù, A., & Huidobro, P. A. (2020). Wood Anomalies and Surface-Wave Excitation with a Time Grating. Physical Review Letters, 125(12), 127403. https://doi.org/10.1103/PhysRevLett.125.127403
30. Duggan, R., Mann, S. A., & Alù, A. (2020). Nonreciprocal photonic topological order driven by uniform optical pumping. Physical Review B, 102(10), 100303. https://doi.org/10.1103/PhysRevB.102.100303
31. Wang, M., Krasnok, A., Lepeshov, S., Hu, G., Jiang, T., Fang, J., Korgel, B. A., Alù, A., & Zheng, Y. (2020). Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. Nature Communications 2020 11:1, 11(1), 1–9. https://doi.org/10.1038/s41467-020-18793-y
32. Li, A., Dong, J., Wang, J., Cheng, Z., Ho, J. S., Zhang, D., Wen, J., Zhang, X.-L., Chan, C. T., Alù, A., Qiu, C.-W., & Chen, L. (2020). Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. Physical Review Letters, 125(18), 187403. https://doi.org/10.1103/PhysRevLett.125.187403
33. Zangeneh-Nejad, F., Alù, A., & Fleury, R. (2020). Topological wave insulators: a review. Comptes Rendus. Physique, 21(4–5), 467–499. https://doi.org/10.5802/CRPHYS.3
35. Alù, A., Li, H., & Alù, A. (2021). Temporal switching to extend the bandwidth of thin absorbers. Optica, Vol. 8, Issue 1, Pp. 24-29, 8(1), 24–29. https://doi.org/10.1364/OPTICA.408399
36. Mekawy, A., & Alù, A. (2021). Giant midinfrared nonlinearity based on multiple quantum well polaritonic metasurfaces. Nanophotonics, 10(1), 667–678. https://doi.org/10.1515/NANOPH-2020-0408
37. Tymchenko, M., Nagulu, A., Krishnaswamy, H., & Alu, A. (2021). Universal Frequency-Domain Analysis of N-Path Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(2), 569–580. https://doi.org/10.1109/TCSI.2020.3040592
38. Bergman, A., Duggan, R., Sharma, K., Tur, M., Zadok, A., & Alù, A. (2021). Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. Nature Communications 2021 12:1, 12(1), 1–9. https://doi.org/10.1038/s41467-020-20797-7
39. Li, J., Wang, M., Wu, Z., Li, H., Hu, G., Jiang, T., Guo, J., Liu, Y., Yao, K., Chen, Z., Fang, J., Fan, D., Korgel, B. A., Alù, A., & Zheng, Y. (2020). Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures. Nano Letters, 21(2), 973–979. https://doi.org/10.1021/ACS.NANOLETT.0C03957
40. Xu, X., Kwon, H., Finch, S., Lee, J. Y., Nordin, L., Wasserman, D., Alù, A., & Dodabalapur, A. (2021). Reflecting metagrating-enhanced thin-film organic light emitting devices. Applied Physics Letters, 118(5), 053302. https://doi.org/10.1063/5.0034573
41. Janković, N., & Alù, A. (2020). Glide-Symmetric Acoustic Waveguides for Extreme Sensing and Isolation. Physical Review Applied, 15(2). https://doi.org/10.1103/physrevapplied.15.024004
42. Rasmussen, C., & Alù, A. (2021). Compressibility-Near-Zero Acoustic Radiation. Physical Review Applied, 15(2), 024022. https://doi.org/10.1103/PhysRevApplied.15.024022
43. Overvig, A., Yu, N., & Alù, A. (2021). Chiral Quasi-Bound States in the Continuum. Physical Review Letters, 126(7), 073001. https://doi.org/10.1103/PhysRevLett.126.073001
44. Esfahlani, H., Mazor, Y., & Alù, A. (2021). Homogenization and design of acoustic Willis metasurfaces. Physical Review B, 103(5), 054306. https://doi.org/10.1103/PhysRevB.103.054306
45. Ramaccia, D., Alù, A., Toscano, A., & Bilotti, F. (2021). Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials. Applied Physics Letters, 118(10), 101901. https://doi.org/10.1063/5.0042567
46. Overvig, A., & Alù, A. (2021). Wavefront-selective Fano resonant metasurfaces. Https://Doi.Org/10.1117/1.AP.3.2.026002, 3(2), 026002. https://doi.org/10.1117/1.AP.3.2.026002
47. Mann, S. A., Mekawy, A., & Alù, A. (2021). Broadband Field Localization, Density of States, and Nonlinearity Enhancement in Nonreciprocal and Topological Hotspots. Physical Review Applied, 15(3), 034064. https://doi.org/10.1103/PhysRevApplied.15.034064
48. Coppolaro, M., Moccia, M., Castaldi, G., Alu, A., & Galdi, V. (2021). Surface-Wave Propagation on Non-Hermitian Metasurfaces with Extreme Anisotropy. IEEE Transactions on Microwave Theory and Techniques, 69(4), 2060–2071. https://doi.org/10.1109/TMTT.2021.3057632
49. Barbuto, M., Alu, A., Bilotti, F., & Toscano, A. (2021). Dual-Circularly Polarized Topological Patch Antenna with Pattern Diversity. IEEE Access, 9, 48769–48776. https://doi.org/10.1109/ACCESS.2021.3068792
50. Alù, A., Qiu, C.-W., Hu, G., Alù, A., & Alù, A. (2021). Twistronics for photons: opinion. Optical Materials Express, Vol. 11, Issue 5, Pp. 1377-1382, 11(5), 1377–1382. https://doi.org/10.1364/OME.423521
51. Hu, G., Wang, M., Mazor, Y., Qiu, C.-W., & Alù, A. (2021). Tailoring Light with Layered and Moiré Metasurfaces. Trends in Chemistry, 3(5), 342–358. https://doi.org/10.1016/J.TRECHM.2021.02.004
52. Mekawy, A., Sounas, D. L., & Alù, A. (2021). Free-Space Nonreciprocal Transmission Based on Nonlinear Coupled Fano Metasurfaces. Photonics 2021, Vol. 8, Page 139, 8(5), 139. https://doi.org/10.3390/PHOTONICS8050139
53. Vakulenko, A., Kiriushechkina, S., Wang, M., Li, M., Zhirihin, D., Ni, X., Guddala, S., Korobkin, D., Alù, A., & Khanikaev, A. B. (2021). Near-Field Characterization of Higher-Order Topological Photonic States at Optical Frequencies. Advanced Materials, 33(18), 2004376. https://doi.org/10.1002/ADMA.202004376
54. Quan, L., Yves, S., Peng, Y., Esfahlani, H., & Alù, A. (2021). Odd Willis coupling induced by broken time-reversal symmetry. Nature Communications 2021 12:1, 12(1), 1–9. https://doi.org/10.1038/s41467-021-22745-5
55. Fang, J., Wang, M., Yao, K., Zhang, T., Krasnok, A., Jiang, T., Choi, J., Kahn, E., Korgel, B. A., Terrones, M., Li, X., Alù, A., & Zheng, Y. (2021). Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. Advanced Materials, 33(20), 2007236. https://doi.org/10.1002/ADMA.202007236
56. Mekawy, A., Li, H., Radi, Y., & Alù, A. (2021). Parametric Enhancement of Radiation from Electrically Small Antennas. Physical Review Applied, 15(5), 054063. https://doi.org/10.1103/PhysRevApplied.15.054063
57. Nefedkin, N., Alù, A., & Krasnok, A. (2021). Quantum Embedded Superstates. Advanced Quantum Technologies, 4(6), 2000121. https://doi.org/10.1002/QUTE.202000121
58. Rasmussen, C., Quan, L., & Alù, A. (2021). Acoustic nonreciprocity. Journal of Applied Physics, 129(21), 210903. https://doi.org/10.1063/5.0050775
59. Kawaguchi, Y., Li, M., Chen, K., Menon, V., Alù, A., & Khanikaev, A. B. (2021). Optical isolator based on chiral light-matter interactions in a ring resonator integrating a dichroic magneto-optical material. Applied Physics Letters, 118(24), 241104. https://doi.org/10.1063/5.0057558
60. Guddala, S., Kawaguchi, Y., Komissarenko, F., Kiriushechkina, S., Vakulenko, A., Chen, K., Alù, A., M. Menon, V., & Khanikaev, A. B. (2021). All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides. Nature Communications 2021 12:1, 12(1), 1–9. https://doi.org/10.1038/s41467-021-24138-0
61. Krasnok, A., Alú, A., Jankovic, N., Sakotic, Z., & Jankovic, N. (2021). Topological scattering singularities and embedded eigenstates for polarization control and sensing applications. Photonics Research, Vol. 9, Issue 7, Pp. 1310-1323, 9(7), 1310–1323. https://doi.org/10.1364/PRJ.424247
62. Li, H., Mekawy, A., & Alù, A. (2021). Gain-Free Parity-Time Symmetry for Evanescent Fields. Physical Review Letters, 127(1), 014301. https://doi.org/10.1103/PhysRevLett.127.014301
63. Mazor, Y., Cotrufo, M., & Alù, A. (2021). Unitary Excitation Transfer between Coupled Cavities Using Temporal Switching. Physical Review Letters, 127(1), 013902. https://doi.org/10.1103/PhysRevLett.127.013902
64. Li, M., Sinev, I., Benimetskiy, F., Ivanova, T., Khestanova, E., Kiriushechkina, S., Vakulenko, A., Guddala, S., Skolnick, M., Menon, V. M., Krizhanovskii, D., Alù, A., Samusev, A., & Khanikaev, A. B. (2021). Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nature Communications 2021 12:1, 12(1), 1–10. https://doi.org/10.1038/s41467-021-24728-y
65. Alù, A., Kim, S., Ni, X., & Alù, A. (2021). Topological insulator in two synthetic dimensions based on an optomechanical resonator. Optica, Vol. 8, Issue 8, Pp. 1024-1032, 8(8), 1024–1032. https://doi.org/10.1364/OPTICA.430821
66. Chen, K., Weiner, M., Li, M., Ni, X., Alù, A., & Khanikaev, A. B. (2021). Nonlocal topological insulators: Deterministic aperiodic arrays supporting localized topological states protected by nonlocal symmetries. Proceedings of the National Academy of Sciences, 118(34), 2021. https://doi.org/10.1073/PNAS.2100691118
67. Rasmussen, C., & Alù, A. (2021). Non-Foster acoustic radiation from an active piezoelectric transducer. Proceedings of the National Academy of Sciences, 118(30). https://doi.org/10.1073/PNAS.2024984118
68. Farhat, M., Chen, P.-Y., Amin, M., Alù, A., & Wu, Y. (2021). Transverse acoustic spin and torque from pure spinning of objects. Physical Review B, 104(6), L060104. https://doi.org/10.1103/PhysRevB.104.L060104
69. Ma, W., Hu, G., Hu, D., Chen, R., Sun, T., Zhang, X., Dai, Q., Zeng, Y., Alù, A., Qiu, C.-W., & Li, P. (2021). Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 2021 596:7872, 596(7872), 362–366. https://doi.org/10.1038/s41586-021-03755-1
70. Cotrufo, M., Mann, S. A., Moussa, H., & Alu, A. (2021). Nonlinearity-Induced Nonreciprocity – Part II. IEEE Transactions on Microwave Theory and Techniques, 69(8), 3584–3597. https://doi.org/10.1109/TMTT.2021.3082192
71. Cotrufo, M., Mann, S. A., Moussa, H., & Alu, A. (2021). Nonlinearity-Induced Nonreciprocity – Part I. IEEE Transactions on Microwave Theory and Techniques, 69(8), 3569–3583. https://doi.org/10.1109/TMTT.2021.3079250

The following iscomplete list of journal papers published in this second year of effort. They consist of over 120 journal papers published in several high-profile journals, including Science, Nature, and PNAS. Our work has been featured on 3 journal covers this year (Fig. 1), in extensive press coverage, and as 6 Editor’s Picks. This outstanding record continues the high level of research productivity enabled by this Collaboration. 

Fig. 1. Journal covers highlighting our work published in this second year of effort (see list below) 

1. Q. Zhang, Q. Ou, G. Si, G. Hu, S. Dong, Y. Chen, J. Ni, C. Zhao, M. S. Fuhrer, Y. Yang, A. Alù, R. Hillenbrand, and C. W. Qiu, (2022).  Unidirectional Excited Phonon Polaritons in High-Symmetry Orthorhombic Crystals, Science Advances, Vol. 8, No. 30, eabn9774 (8). 
2. M. Wang, G. Hu, S. Chand, M. Cotrufo, Y. Abate, K. Watanabe, T. Taniguchi, G. Grosso, C. W. Qiu, and A. Alù, (2022).  Spin-Orbit-Locked Hyperbolic Polariton Vortices Carrying Reconfigurable Topological Charges, E-Light, Vol. 2, No. 12 (11).
3. T. Shi, Z. L. Deng, X. Zeng, G. Geng, Y. Zeng, G. Hu, A. Overvig, J. Li, C. W. Qiu, A. Alù, Y. S. Kivshar, and X. Li, (2022).  Chiral Metasurfaces with Maximal Tunable Chiroptical Response Driven by Bound States in the Continuum, Nature Communications, Vol. 13, No. 4111 (8).
4. Y. W. Tsai, Y. T. Wang, E. Galiffi, A. Alù, and T. J. Yen, (2022). Surface-Wave Coupling in Double Floquet Sheets Supporting Phased Temporal Wood Anomalies,” Nanophotonics, Vol. 11, No. 15, pp. 3509-3517. https://doi.org/10.1515/nanoph-2022-0253
5. A. Alù, “Nonlinear Topological Photonics,” Journal of Physics: Photonics, in H. Price, Y. Chong, A. Khanikaev, H. Schomerus, L. J. Maczewsky, M. Kremer, M. Heinrich, A. Szameit, O. Zilberberg, Y. Yang, B. Zhang, A. Alù, R. Thomale, I. Carusotto, P. St-Jean, A. Amo, A. Dutt, L. Yuan, S. Fan, X. Yin, C. Peng, T. Ozawa, and A. Blanco-Redondo, “Roadmap on Topological Photonics,” Vol. 4, No. 3, 032501 (45 pages), July (2022). (invited paper) 
6. F. B. Arango, F. Alpeggiani, D. Conteduca, A. Opheij, A. Chen, M. I. Abdelrahman, T. Krauss, A. Alù, F. Monticone, and L. Kuipers, (2022). Cloaked Near-Field Probe for Non-Invasive Near-Field Optical Microscopy, Optica, Vol. 9, No. 7, pp. 684-691. https://doi.org/10.48550/arXiv.2201.00266
7. R. E. Jacobsen, A. Krasnok, S. Arslanagić, A. V. Lavrinenko, and A. Alù, (2022). Boundary-Induced Embedded Eigenstate in a Single Resonator for Advanced Sensing, ACS Photonics, Vol. 9, No. 6, pp. 1936-1943.  https://doi.org/10.1021/acsphotonics.1c01840
8. Z. L. Deng, F. J. LI, H. Li, X. Li, and A. Alù, (2022). Extreme Diffraction Control in Metagratings Leveraging Bound States in the Continuum and Exceptional Points, Laser and Photonics Reviews, Vol. 16, No. 6, 2100617 (6). https://doi.org/10.1002/lpor.202100617
9. A. Nagulu, X. Ni, A. Kord, M. Tymchenko, S. Garikapati, A. Alù, and H. Krishnaswamy, (2022). Chip-Scale Floquet Topological Insulators for 5G Wireless Systems, Nature Electronics, Vol. 5, pp. 300-309. https://doi.org/10.1038/s41928-022-00751-9
10.  M. Markowitz, M. Cotrufo, Y. Zhou, K. Stensvad, C. Schardt, A. Overvig, and A. Alù, (2022).  Resonant Waveguide Gratings for Augmented Reality, Optics Express, Vol. 30, No. 12, pp. 20469-20481.
11. Y. G. Peng, Y. Mazor, and A. Alù, (2022). Fundamentals of Acoustic Willis Media, Wave Motion, Vol. 112, 102930 (10). https://doi.org/10.1016/j.wavemoti.2022.102930
12. C. L. Holloway, N. Prajapati, A. B. Artusio-Glimpse, S. Breweger, M. T. Simons, Y. Kasahara, A. Alù, and R. W. Ziolkowski, (2022).  Rydberg Atom-Based Field Sensing Enhancement Using a Split-Ring Resonator,” Applied Physics Letters, Vol. 120, 204001 (6). https://doi.org/10.1063/5.0088532
13. S. Yin, E. Galiffi, and A. Alù, (2022). Floquet Metamaterials,  E-Light, Vol. 2, No. 8 (13).  https://doi.org/10.1186/s43593-022-00015-1
14. S. Yves, M. I. N. Rosa, Y. Guo, M. Gupta, M. Ruzzene, and A. Alù, (2022). Moiré-Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces,” Advanced Science, Vol. 9, No. 13, 2200181 (8). https://doi.org/10.1021/acs.nanolett.9b05319
15. S. Yves, M. I. N. Rosa, Y. Guo, M. Gupta, M. Ruzzene, and A. Alù, (2022). Moiré-Driven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces, Advanced Science, Vol. 9, No. 13, 2200181 (8). https://doi.org/10.1021/acs.nanolett.9b05319
16. H. Li, S. Yin, and A. Alù, (2022). Nonreciprocity and Faraday Rotation at Time Interfaces, Physical Review Letters, Vol. 128, No. 17, 173901 (7). https://doi.org/10.1103/PhysRevLett.128.173901
17. X. Shu, A. Li, G. Hu, J. Wang, A. Alù, and L. Chen, (2022).   Encirclement of an Exceptional Point for Highly Efficient and Compact Chiral Mode Converters, Nature Communications, Vol. 13, 2123 (6). https://doi.org/10.1038/s41467-022-29777-5
18. J. Fang, K. Yao, T. Zhang, M. Wang, T. Jiang, S. Huang, B. A. Korgel, M. Terrones, A. Alù, and Y. Zheng, (2022). Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS2,” Advanced Materials, Vol. 34, No. 15, 2108721 (6). https://doi.org/10.1002/adma.202108721
19. G. Xu, Y. Yang, X. Zhou, H. Chen, A. Alù, and C. W. Qiu, (2022). Diffusive Topological Transport in Spatiotemporal Thermal Lattices, Nature Physics, Vol. 18, pp. 450-456.https://doi.org/10.1038/s41567-021-01493-9
20. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alù, W. Cai, and A. Adibi, (2022). Electrically Driven Reprogrammable Phase-Change Metasurface Reaching 80% Efficiency, Nature Communications, Vol. 13, No. 1696 (11). https://doi.org/10.1038/s41467-022-29374-6
21. S. Yin, and A. Alù, (2022). Efficient Phase Conjugation in a Space-Time Leaky Waveguide, ACS Photonics, Vol. 9, No. 3, pp. 979-984. https://doi.org/10.1021/acsphotonics.1c01836
22. Y. Kawaguchi, A. Alù, and A. B. Khanikaev, (2022). Non-Reciprocal Parity-Time Symmetry Breaking Based on Magneto-Optical and Gain/Loss Double Ring Resonators, Optical Materials Express, Vol. 12, No. 4, pp. 1453-1460. https://doi.org/10.1364/OME.450821
23. L. Huang, A. Krasnok, A. Alù, Y. Yu, D. Neshev, and A. E Miroshnichenko, (2021).  Enhanced Light-Matter Interaction in Two-Dimensional Transition Metal Dichalcogenides,  Progress in Physics, Vol. 85, No. 4, 046401 (75). https://doi.org/10.1088/1361-6633/ac45f9
24. R. Duggan, H. Moussa, D. L. Sounas, and A. Alù, (2022). Stability Bounds on Superluminal Propagation in Active Structures, Nature Communications, Vol. 13, No. 1115 (10). https://doi.org/10.1038/s41467-022-28713-x
25. J. Soric, Y. Ra’di, D. Farfan, and A. Alù, (2022). Radio-Transparent Dipole Antenna Based on a Metasurface Cloak, Nature Communications, Vol. 13, No. 1114 (8). https://doi.org/10.1038/s41467-022-28714-w
26. N. Nefedkin, M. Cotrufo, A. Krasnok, and A. Alù, (2022). Dark-State Induced Quantum Nonreciprocity, Advanced Quantum Technologies, Vol. 5, No. 3, 2100112 (17). https://doi.org/10.1002/qute.202100112
27. N. C. Passler, X. Ni, G. Hu, J. R. Matson, G. Carini, M. Wolf, M. Schubert, A. Alù, J. D. Caldwell, T. G. Folland, and A. Paarmann, (2022). Hyperbolic Shear Polaritons in Low-Symmetry Crystals,” Nature, Vol. 602, pp. 599-602. https://doi.org/10.1038/s41586-021-04328-y
28. H. Goh, and A. Alù, Nonlocal Scatterer for Compact Wave-Based Analog Computing, (2022).  Physical Review Letters, Vol. 128, No. 7, 073201. https://doi.org/10.1103/PhysRevLett.128.073201
29. C. Qin, A. Alù, and Z. J. Wong, (2022).  Pseudo-Spin Orbit Coupling for Chiral Light Routing in Gauge-Flux-Biased Coupled Microring Resonator Arrays, ACS Photonics, Vol. 9, No. 2, pp. 586-596. https://doi.org/10.1021/acsphotonics.1c01561
30. M. Khatoniar, R. Bushati, A. Mekawy, F. Dirnberger, A. Alù, and V. M. Menon, (2022).  Relaxing Symmetry Rules for Nonlinear Optical Interactions in Van der Waals Materials via Strong Light–Matter Coupling, ACS Photonics, Vol. 9, No. 2, pp. 503-510. https://doi.org/10.1021/acsphotonics.1c01242
31. E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza, A. Alù, and J. B. Pendry, (2022). Photonics of Time-Varying Media, Advanced Photonics, Vol. 4, No. 1, 014002 (32). https://doi.org/10.1117/1.AP.4.1.014002
32. Q. Xu, X. Su, X. Zhang, L. Dong, L. Liu, Y. Shi, Q. Wang, M. Kang, A. Alù, S. Zhang, J. Han, and W. Zhang, (2022). Mechanically Reprogrammable Pancharatnam-Berry Metasurface for Microwaves, Advanced Photonics, Vol. 4, No. 1, 016002 (11). https://doi.org/10.1117/1.AP.4.1.016002
33. Y. Radi, and A. Alù, (2021). Metagratings for Efficient Wavefront Manipulation,” IEEE Photonics Journal, Vol. 14, No. 1, No. 2207513 (13). doi: 10.1109/JPHOT.2021.3136202.
34. A. Krasnok, and A. Alù, (2022). Low-Symmetry NanophotonicsACS Photonics, Vol. 9, No. 1, pp. 2-24. https://doi.org/10.1021/acsphotonics.1c00968
35. J. Li, Y. Li, P. C. Cao, M. Qi, X. Zheng, Y. G. Peng, B. Li, X. F. Zhu, A. Alù., H. Chen, and C. W. Qiu, (2022). Reciprocity of Thermal Diffusion in Time-Modulated Systems,” Nature Communications, Vol. 13, No. 167 (8). https://doi.org/10.1038/s41467-021-27903-3
36. Z. L. Deng, T. Shi, A. Krasnok, X. Li, and A. Alù, (2022). Observation of Localized Magnetic Plasmon Skyrmions, Nature Communications, Vol. 13, No. 8 (7). https://doi.org/10.1038/s41467-021-27710-w
37. A. Alù, “Space-Time Metasurfaces,” in M. Piccardo, V. Ginis, A. Forbes, S. Mahler, A. A. Friesem, N. Davidson, H. Ren, A. H. Dorrah, F. Capasso, F. T. Dullo, B. S. Ahluwalia, A. Ambrosio, S. Gigan, N. Treps, M. Hiekkamäki, R. Fickler, M. Kues, D. Moss, R. Morandotti, J. Riemensberger, T. J. Kippenberg, J. Faist, G. Scalari, N. Picqué, T. W. Hänsch, G. Cerullo, C. Manzoni, L. A. Lugiato, M. Brambilla, L. Columbo, A. Gatti, F. Prati, A. Shiri, A. F. Abouraddy, A. Alù, E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Roadmap on Multimode Light Shaping,” Journal of Optics, Vol. 24, No. 1, 013001 (53). December (2021).
38. A. Krasnok, N. Nefedkin, and A. Alù, (2021). Parity-Time Symmetry and Exceptional Points,” IEEE Antennas and Propagation Magazine, Vol. 63, No. 3, pp. 110-121. doi: 10.1109/MAP.2021.3115766.
39. A. Kord, and A. Alù, (2021). Magnetless Circulators Based on Synthetic Angular-Momentum Bias, IEEE Antennas and Propagation Magazine, Vol. 63, No. 6, pp. 51-61.   doi: 10.1109/MAP.2020.3043437.
40. Y. K. Chiang, L. Quan, Y. Peng, S. Sepehrirahnama, S. Oberst, A. Alù, and D. A. Powell, (2021). Scalable Metagrating for Efficient Ultrasonic Focusing, Physical Review Applied, Vol. 16, No. 6, 064014 (9). https://doi.org/10.1103/PhysRevApplied.16.064014
41. J. Zhang, B. Peng, S. Kim, F. Monifi, X. Jiang, Y. Li, P. Yu, L. Liu, Y. X. Liu, A. Alù, and L. Yang, (2021). Optomechanical Dissipative Solitons, Nature, Vol. 600, pp. 75-80. https://doi.org/10.1038/s41586-021-04012-1 
42. A. Hofstrand, M. Cotrufo, and A. Alù, (2021). Nonreciprocal Pulse Shaping and Chaotic Modulation with Asymmetric Noninstantaneous Nonlinear Resonators, Physical Review A, Vol. 104, No. 5, 053529 (8).
43. G. Hu, C. W. Qiu, W. Ma, R. Chen, X. Zhang, P. Li, D. Hu, Q. Dai, and A. Alù, (2021). Polaritonics on Viking Sunstones,” Optics and Photonics News,  Vol. 32, No. 12, p. 49. doi: 10.1038/news.2011.58.
44. M. Pascale, S. A. Mann, C. Forestiere, and A. Alù,  (2021).  Bandwidth of Singular Plasmonic Resonators in Relation to the Chu Limit,” ACS Photonics, Vol. 8, No. 11, pp. 3249-3260. https://doi.org/10.1021/acsphotonics.1c01084
45. Z. X. Chen, Y. G. Peng, H. X. Li, J. J. Liu, Y. J. Ding, B. Liang, X. F. Zhu, Y. Q. Lu, J. C. Cheng, and A. Alù, (2021). Efficient Nonreciprocal Mode Transitions in Spatiotemporally Modulated Acoustic Metamaterials, Science Advances, Vol. 7, No. 45, eabj1198 (8). DOI: 10.1126/sciadv.abj1198
46. S. Ramezanpour, A. Bogdanov, A. Alù, and Y. Radi, (2021). Generalization of Exceptional Point Conditions in Perturbed Coupled Resonators,” Physical Review B, Vol. 104, No. 20, 205405 (8). https://doi.org/10.1103/PhysRevB.104.205405
47. Z. Xiao, and A. Alù, (2021). Tailoring Exceptional Points in a Hybrid PT-Symmetric and Anti-PT-Symmetric Scattering System, Nanophotonics, Vol. 10, No. 14, pp. 3723-3733. 
48. C. Valagiannopoulos, A. Sarsen, and A. Alù, (2021). Angular Memory of Photonic Metasurfaces,” IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, pp. 7720-7728. doi: 10.1109/TAP.2021.3083806.
49. A. Alù, C. Daraio, P. Deymier, and M. Ruzzene, (2021). Topological Acoustics,” Acoustics Today, Vol. 17, No. 3, pp. 13-21.  
50. S. Guddala, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, M. Li, V. M. Menon, A. Alù, and A. B. Khanikaev, (2021). Topological Phonon-Polariton Funneling in Midinfrared Polaritonic Metasurfaces,” Science, Vol 374, No. 6564, pp. 225-227. 
51. H. Li, S. Yin, E. Galiffi, and A. Alù, (2021). Temporal Parity-Time Symmetry for Extreme Energy Transformations,” Physical Review Letters, Vol. 127, 153903 (7). https://doi.org/10.1103/PhysRevLett.127.153903
52. S. Yves, and A. Alù, (2021). Extreme Anisotropy and Dispersion Engineering in Locally Resonant Acoustic Metamaterials, Journal of the Acoustic Society of America, Special Issue on Additive Manufacturing, Vol. 150, pp. 2040-2045. https://doi.org/10.1121/10.0006237
53. S. A. Mann, and A. Alù, (2021). Broadband Topological Slow Light through Brillouin-Zone Winding,” Physical Review Letters, Vol. 127, No. 12, 123601 (6). https://doi.org/10.1103/PhysRevLett.127.123601
54. Q. Zhang, G. Hu, W. Ma, P. Li, A. Krasnok, R. Hillebrand, A. Alù, and C. W. Qiu, (2021). Interface Nano-Optics with Van der Waals Polaritons, Nature, Vol. 597, pp. 187-195. https://doi.org/10.1038/s41586-021-03581-5
55. M. Miscuglio, Y. Gui, X. Ma, Z. Ma, S. Sun, T. El Ghazawi, T. Itoh, A. Alù, and V. J. Sorger, (2021).  Approximate Analog Computing with Metatronic Circuits,” Communications Physics, Vol. 4, 196(11). https://doi.org/10.1038/s42005-021-00683-4
56. K. Chen, M. Weiner, M. Li, X. Ni, A. Alù, and A. B. Khanikaev, (2021). Nonlocal Topological Insulators: Deterministic Aperiodic Arrays Supporting Localized Topological States Protected by Nonlocal Symmetries,” Proceedings of the National Academy of Sciences, Vol. 118, No. 34, e2100691118. https://doi.org/10.1073/pnas.2100691118
57. M. Farhat, P. Y. Chen, M. Amin, A. Alù, and Y. Wu, (2021). Transverse Acoustic Spin and Torque from Pure Spinning of Objects, Physical Review B (Letter), Vol. 104, L060104. https://doi.org/10.1103/PhysRevB.104.L060104
58. W. Ma, G. Hu, D. Hu, R. Chen, T. Sun, X. Zhang, Q. Dai, Y. Zeng, A. Alù, C. W. Qiu, and P. Li, (2021). Ghost Hyperbolic Surface Polaritons in Bulk Anisotropic Crystals, Nature, Vol. 596, pp. 362-366. https://doi.org/10.1038/s41586-021-03755-1
59. F. Shafiei, T. Orzali, A. Vert, M. A. Miri, P. Y. Hung, M. H. Wong, A. Alù, G. Bersuker, M. C. Downer, (2021). Detection of Subsurface, Nanometer-Scale Crystallographic Defects by Nonlinear Light Scattering and Localization, Advanced Optical Materials, Vol. 9, No. 16, 2002252. 
60. N. Janković, S. Ilić, V. Bengin, S. Birgermajer, V. Radonić, and A. Alù, (2021). Acoustic Spoof Surface Plasmon Polaritons for Filtering, Isolation and Sensing,Reports in Physics, Vol. 28, 104645.  https://doi.org/10.1016/j.rinp.2021.104645
61. M. Cotrufo, S. A. Mann, H. Moussa, and A. Alù, (2021). Nonlinearity-Induced Nonreciprocity – Part II, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 8, pp. 3584-3597. doi: 10.1109/TMTT.2021.3082192.
62. M. Cotrufo, S. A. Mann, H. Moussa, and A. Alù, (2021). Nonlinearity-Induced Nonreciprocity – Part I, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 8, pp. 3569-3583. doi: 10.1109/TMTT.2021.3079250.
63. A. Monti, A. Alù, A. Toscano, and F. Bilotti, (2021). Design of High-Q Passband Filters Implemented Through Multipolar All-Dielectric Metasurfaces, IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, pp. 5142-5147.  doi: 10.1109/TAP.2020.3045795.
64. C. M. Bender, and D. W. Hook, (2021). PT-Symmetric Classical Mechanics, Journal of Physics.: Conference Series, 2038,012003. https://doi.org/10.48550/arXiv.2103.04214
65. A. Felski, C. M. Bender, S. P. Klevansky, and S. Sarkar, (2021). Towards Perturbative Renormalization of φ2(iφ)εQuantum Field Theory, Physical Review D 104, 085011. https://doi.org/10.1103/PhysRevD.104.085011
66. C. M. Bender, A. Felski, S. P. Klevansky, and S. Sarkar, (2021). PT Symmetry and Renormalization in Quantum Field Theory,” Journal of Physics.: Conference Series, 2038, 012004.  https://doi.org/10.48550/arXiv.2103.14864
67. C. M. Bender,“PT Symmetry,” To be published in Time and Science, ed. by R. Lestienne and P. Harris September (2022).
68. C. M. Bender and J. Komijani, (2022) Addendum: Painleve Equation and PT-symmetric Hamiltonians (2015 J. Phys. A: Math.Theor.48, 475202), Journal of Physics A: Mathematical and Theoretical, 55, 109401. https://doi.org/10.1088/1751-8113/48/47/475202
69. C. M. Bender, (2021). Calculation of Green’s Functions in PT-Symmetric Quantum Field Theory, World Scientific, From the Past to the Future, 121-137 https://doi.org/10.1142/9789811231124_0006
70. C. M. Bender and S. P. Klevansky,“Dyson-Schwinger Equations and Polynomial Approximations” (in preparation).
 71. C. M. Bender and D. W. Hook, “Detailed Analysis of PT-symmetric Classical Mechanics” (in preparation).
 
 72. Li S, Librandi G, Yao Y, Richard AJ, Schneider-Yamamura A, Aizenberg J, Bertoldi K. (2021) “Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures.” Advanced Materials.
 
 73. G. Xu, W. Li, X. Zhou, H. Li, Y. Li, S. Fan, S. Zhang, D. N. Christodoulides, and C.-W. Qiu, (2022). Observation of Weyl Exceptional Rings in Thermal Diffusion, Proceedings of the National Academy of Sciences, 119 (15), e2110018119. https://doi.org/10.1073/pnas.2110018119
 
74. F. O. Wu, Q. Zhong, H. Ren, P. S. Jung, K. G. Makris, and D. N. Christodoulides, (2022). Thermalization of Light’s Orbital Angular Momentum in Nonlinear Multimode Waveguide Systems, Physical Review Letters, 128 (12), 123901. https://doi.org/10.1103/PhysRevLett.128.123901
 
 75. M. A. Selim, F. O. Wu, H. Ren, M. Khajavikhan, and D. Christodoulides, (2022). Thermodynamic Description of the Near- and Far-Field Intensity Patterns Emerging from Multimode Nonlinear Waveguide Arrays, Physical Review A 105 (1), 013514. https://doi.org/10.1103/PhysRevA.105.013514
 
 76. G. G. Pyrialakos, H. Ren, P. S. Jung, M. Khajavikhan, and D. N. Christodoulides, (2022). Thermalization Dynamics of Nonlinear Non-Hermitian Optical Lattices, Physical Review Letters 128 (21), 213901. https://doi.org/10.1103/PhysRevLett.128.213901
 
77. G. G. Pyrialakos, J. Beck, M. Heinrich, L. J. Maczewsky, N. V. Kantartzis, M. Khajavikhan, A. Szameit, and D. N. Christodoulides, (2022). Bimorphic Floquet Topological Insulators,” Nature Materials 21, 634. https://doi.org/10.1038/s41563-022-01238-w
 
78. H. Pourbeyram, P. Sidorenko, F. O. Wu, N. Bender, L. Wright, D. N. Christodoulides, and F. Wise, (2022). Direct Observations of Thermalization to a Rayleigh–Jeans Distribution in Multimode Optical Fibres,” Nature Physics 18, 685. https://doi.org/10.1038/s41567-022-01579-y
 
79. H. Nasari, G. Lopez-Galmiche, H. E. Lopez-Aviles, A. Schumer, A. U. Hassan, Q. Zhong, S. Rotter, P. LiKamWa, D. N. Christodoulides, and M. Khajavikhan, (2022). Observation of Chiral State Transfer Without Encircling an Exceptional Point, Nature 605 (7909), 256. https://doi.org/10.1038/s41586-022-04542-2
 
80. H. Luo, Y. Jia, F. Tian, M. Khajavikhan, and D. Christodoulides, (2022). Network Analysis of Weyl Semimetal Photogalvanic Systems,” Optics Letters, 47 (10), 2450  https://doi.org/10.1364/OL.452929
 
81. P. S. Jung, M. Parto, G. G. Pyrialakos, H. Nasari, K. Rutkowska, M. Trippenbach, M. Khajavikhan, W. Krolikowski, and D. N. Christodoulides, “Optical Thouless Pumping Transport and Nonlinear Switching in a Topological Low-Dimensional Discrete Nematic Liquid Crystal Array,” Physical Review A, 105 (1), 013513 (2022). https://doi.org/10.1103/PhysRevA.105.013513
 
82. H. Haig, P. Sidorenko, A. Dhar, N. Choudhury, R. Sen, D. Christodoulides, and F. Wise,  (2022). Multimode Mamyshev Oscillator, Optics Letters,  47 (1), 46. https://doi.org/10.1364/OL.447208
 
83. Z. Xiong, F. O. Wu, J.-T. Lü, Z. Ruan, D. N. Christodoulides, and Y. Chen,(2022). K-space Thermodynamic Funneling of Light via Heat Exchange, Physical Review A 105 (3), 033529. https://doi.org/10.1103/PhysRevA.105.033529
 
84. X. Wen, X. Zhu, A. Fan, W. Y. Tam, J. Zhu, H. W. Wu, F. Lemoult, M. Fink, and J. Li, Unidirectional Amplification with Acoustic Non-Hermitian Space−time Varying Metamaterial,” Communications Physics, Vol. 5, No. 1, 1-7, (2022).
 
85. M. Benzaouia, et al., (2022). Analytical Design Criteria for Designing Multiresonance Filters in Scattering Systems, with Application to Microwave Metasurfaces,” Physical Review Applied, vol. 17, p. 034018. https://doi.org/10.1103/PhysRevApplied.17.034018
 
86. M. Benzaouia, J. D. Joannopoulos, S. G. Johnson, and A. Karalis, (2021). Quasi-normal Mode Theory of the Scattering Matrix, Enforcing Fundamental Constraints for Truncated Expansions, Physical Review Research, vol. 3, p. 033228.  https://doi.org/10.1103/PhysRevResearch.3.033228
 
87. S. Fisher, R. Pestourie, and S. G. Johnson, (2022). Efficient Perturbative Framework for Coupling of Radiative and Guided Modes, Physical Review A, 106, 013507. https://doi.org/10.1103/PhysRevA.106.013507
 
88. A. M. Hammond, A. Oskooi, M. Chen, Z. Lin, S. G. Johnson, and S. E. Ralph,(2022). High-performance Hybrid Time/Frequency-domain Topology Optimization for Large-scale Photonics Inverse Design, Optics Express, vol. 30, no. 3, pp. 4467–4491. https://doi.org/10.1364/OE.442074
 
89. K. Chen and A. B. Khanikaev, (2022). Non-Hermitian C=2 Chern Insulator Protected by Generalized Rotational Symmetry, Physical Review B, 105, L081112. https://doi.org/10.1103/PhysRevB.105.L081112
 
90. I. Sinev, M. Li, F. Benimetskiy, T. Ivanova, S. Kiriushechkina, A. Vakulenko, S. Guddala, D. Krizhanovskii, A. Samusev, A. B. Khanikaev, (2021). Strong Light-matter Coupling in Topological Metasurfaces Integrated with Transition Metal Dichalcogenides,” Journal of Physics 1,  2015 012142.
 
91. S. Guddala, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, M. Li, V. M. Menon, A Alù, A. B. Khanikaev, (2021). Topological Phonon-polariton Funneling in Midinfrared Metasurfaces, Science, 374, 225-227. /doi/10.1126/sciadv.abn9774
 
92. M. Li, I. Sinev, F. Benimetskiy, T. Ivanova, E. Khestanova, S. Kiriushechkina, A. Vakulenko, S. Guddala, M. Skolnick, V. M. Menon, D. Krizhanovskii, A. Alù, A. Samusev, A. B. Khanikaev, (2021). Experimental Observation of Topological Z2 Exciton-polaritons in Transition Metal Dichalcogenide Monolayers,  Nature Communications, 12, 1-10. https://doi.org/10.1038/s41467-021-24728-y
 
93. S. Guddala, Y. Kawaguchi, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, K. Chen, A. Alù, V. M. Menon, A. B. Khanikaev, (2021). All-optical Nonreciprocity Due to Valley Polarization Pumping in Transition Metal Dichalcogenides, Nature Communications, 12, 1-9. https://doi.org/10.1038/s41467-021-24138-0
 
94. K. Chen, M. Weiner, M. Li, X. Ni, A. Alù, A. B. Khanikaev, (2021). Nonlocal Topological Insulators: Deterministic Aperiodic Arrays Supporting Localized Topological States Protected by Nonlocal Symmetries, Proceedings of the National Academy of Sciences 118, e2100691118. https://doi.org/10.1073/pnas.2100691118
 
95. R. V. Kohn and R. Venkatraman, (2022). Complex Analytic Dependence on the Dielectric Permittivity in ENZ Materials: The Photonic Doping Example, Comm Pure Appl Math.  https://arxiv.org/abs/2203.08911 
 
96. S. Alama, L. Bronsard, X. Lamy, and R. Venkatraman, (2022). Far-field Expansions for Harmonic Maps and the Electrostatics Analogy for Nematic Suspensions, Journal of Nonlinear Science. https://arxiv.org/abs/2202.12794 
 
97. I. Fonseca, R. Ferreira, and R. Venkatraman, (2022). Variational homogenization: Old and New,” to appear in Proceedings of the International Congress of Mathematicians.
 
98. R. Kononchuk, J. Cai, F. Ellis, R. Thevamaran, T. Kottos,(2022). Exceptional-point-based Accelerometers with Enhanced Signal-to-noise Ratio,”  Nature, 607, p. 697–702. https://doi.org/10.1038/s41586-022-04904-w
 
99. William Tuxbury, Rorion Kononchuk, Tsampikos Kottos, (2022). Non-resonant Exceptional Points as Enablers of Noise-resilient Sensors,  Communications Physics, 5. https://doi.org/10.1038/s42005-022-00973-5
 
100. C. Shi, T. Kottos, B. Shapiro, (2021). Controlling Optical Beam Thermalization via Band-gap Engineering, Physical Review Research, Vol. 3, 033219.  https://doi.org/10.1103/PhysRevResearch.3.033219.
 
101. Y. X. Li, D. Cohen, T. Kottos,(2022). Enforcing Levy Relaxation for Multi-mode Fibers with Correlated Disorder, New Journal of Physics, Vol. 24, 053012. https://doi.org/10.1088/1367-2630/ac6318
 
102.  S. Suwunnarat, Y. Tang, M. Reisner, F. Mortessagne, U. Kuhl, T. Kottos, (2022). Non-linear Coherent Perfect Absorption in the Proximity of Exceptional Points, Communications Physics Vol. 5, 5.  https://doi.org/10.1038/s42005-021-00782-2.
 
103. A. Gupta, A. Kurnosov, T. Kottos, R. Thevamaran, (2022). Boosting of Purcell Enhancement Factor Near Exceptional Point Degeneracies in an Elastodynamic Metamaterial,   https://arxiv.org/abs/2201.10744
 
104. S. A. Lannebère, D. E. Fernandes, T. A. Morgado, M. G. Silveirinha, (2022). Nonreciprocal and Non-Hermitian Material Response Inspired by Semiconductor Transistors, Physical Review Letters, 128, 013902. https://doi.org/10.1103/PhysRevLett.128.013902
 
105. E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza, A. Alù, J. B. Pendry, Photonics of Time-Varying Media, Advanced Photonics,  4(1), 014002 (2022). https://doi.org/10.1117/1.AP.4.1.014002
 
106. J. B. Pendry, P. A. Huidobro, M. G. Silveirinha, E. Galiffi, (2022). Crossing the Light Line, Nanophotonics, 11, 161–167.  https://doi.org/10.48550/arXiv.2110.00956
 
107. F. R. Prudêncio, M. G. Silveirinha, (2021). First Principles Calculation of the Topological Phases of the Photonic Haldane Model,” Symmetry, 13, 2229. https://doi.org/10.3390/sym13112229
 
108. S. V. Silva, D. E. Fernandes, T. A. Morgado, M. G. Silveirinha, (2022). Topological Pumping and Tamm States in Photonic Systems, Physical Review B, 105, 155133. https://doi.org/10.1103/PhysRevB.105.155133
 
109. D. E. Fernandes, R. A. M. Pereira, S. Lannebère, T. A. Morgado, M. G. Silveirinha, (2022). Experimental Verification of Ill-defined Topologies and Energy Sinks in Electromagnetic Continua, Advance Photonics, 4(3), 035003. https://doi.org/10.1117/1.AP.4.3.035003
 
110. D. E. Fernandes, M. G. Silveirinha, (2022). Role of Time-Reversal Symmetry in the Dynamical Response of “One-Way” Nonlinear Devices, Physical Review Applied, 18, 024002. https://doi.org/10.1103/PhysRevApplied.18.024002
 
111. F. R. Prudêncio, M. G. Silveirinha, (2021). Monopole Embedded Eigenstates in Nonlocal Plasmonic Nanospheres,” Applied Physic Letter, 119 (26), 261101. https://doi.org/10.1063/5.0077123
 
112. M. G. Silveirinha, N. Engheta, “Structuring Light with Near-Zero-Index Platforms,” submitted to J. Optics (2022).
 
113. S. A. Lannebère, N. Engheta, M. G. Silveirinha, “Microscopic Models for Materials with a Transistor-like Response,” (in preparation).
 
114. J. Serra, N. Engheta, M. G. Silveirinha, “Non-Hermitian Edge States in A Transistor-metamaterial,” (in preparation).
 
115. Ming Han, Michel Fruchart, Colin Scheibner, Suriyanarayanan Vaikuntanathan, Juan J. de Pablo, Vincenzo Vitelli (2021). Fluctuating Hydrodynamics of Chiral Active Fluids, Nature Physics 17, 1260–1269. https://doi.org/10.1038/s41567-021-01318-9
 
116.  Michel Fruchart, Ming Han, Colin Scheibner, Vincenzo Vitelli, (2022). The Odd Ideal Gas: Hall Viscosity and Thermal Conductivity from Non-Hermitian Kinetic Theory, https://arxiv.org/abs/2202.02037
 
117.  Lara Braverman, Colin Scheibner, Bryan VanSaders, Vincenzo Vitelli, (2021).  Topological Defects in Solids with Odd Elasticity, Physical Review Letters 127, 268001. https://doi.org/10.1103/PhysRevLett.127.268001
 
118. Yangyang Chen, Xiaopeng Li, Colin Scheibner, Vincenzo Vitelli, Guoliang Huang,(2021). Realization of Active Metamaterials with Odd Micropolar Elasticity, Nature Communications 12. https://doi.org/10.1038/s41467-021-26034-z
 
119. Martin Brandenbourger, Colin Scheibner, Jonas Veenstra, Vincenzo Vitelli, Corentin Coulais,(2021). Limit Cycles Turn Active Matter into Robots. https://arxiv.org/abs/2108.08837  
 
120. Michel Fruchart, Ryo Hanai, Peter B. Littlewood, Vincenzo Vitelli, (2021).  Non-reciprocal Phase Transitions, Nature, 592, 363–369.  https://doi.org/10.1038/d41586-021-00886-3
 
121. Hamed Abbaszadeh, Michel Fruchart, Wim van Saarloos, Vincenzo Vitelli,(2021). Liquid-crystal-based Topological Photonics, Proceedings of the National Academy of Sciences, 118, e2020525118. https://doi.org/10.1073/pnas.2020525118
 
122. Michel Fruchart, Claudia Yao, Vincenzo Vitelli, (2021). Systematic Generation of Hamiltonian Families with Dualities, https://arxiv.org/abs/2108.11138

Annual Progress