ADVANCED SCIENCE SEARCH CENTER Environmental Forensics: Seeking Linkages Across Unique Chemical Transformations **RESEARCH CENTER CITY UNIVERSITY OF NEW YORK**

Introduction

Explosives can enter the environment in their intact form but also by detonation or partial detonation. A discontinuity exists in the lifecycle of these materials. Linkages between pre- and post-blast residues are unexplored environmental concerns. It is a significant knowledge gap — how do intact and detonated energetics differ, what is their environmental fate, and can we find a linkage between them?

Environmental Simulations

Brian M. Giebel: CUNY Advanced Science Research Center; Jimmie Oxley: University of Rhode Island

- Characterize if/how chemical and isotopic fingerprints of an explosive changes during detonation and in post-blast residue
- Determine of isotopic signature of post-blast residue can be used to establish provenance and identification.
- Evaluate changes in isotopic signatures and growth of transformation products during \bullet 'environmental aging'.
- Perform a full lifecycle analysis of energetic materials from manufacture, through \bullet detonation, and environmental ageing processes.

- Stable Isotope Ratio Mass Spectrometry **High Resolution Mass Spectrometry** Using a combination of insensitive (DNAN, NTO, NQ) and legacy (TNT, RDX, HMX) munitions

Materials obtained from:

- Holston Army Ammunition Lab (H)
- Sigma Aldrich (SA)
- Univ. of Delaware (UD)

	δ13C			δ15Ν			
EA-IRMS GC-IRMS			EA-IRMS	GC-IRMS			
Pure	Solution	Sand	Soil	Pure	Solution	Sand	Soil
-27.87	-27.47	-27.60	-27.21	-26.43	-27.14	-27.00	-25.92
(±0.29)	(±0.4)	(±0.18)	(±0.37)	(±0.12)	(±0.62)	(±0.56)	(±0.53)

New materials from Picatinny Arsenal: • Significantly depleted δ 15N value • Challenge to find isotopic reference

Objectives

Technical Approach

Chemical Provenance

Barriers & Next Steps

DNAN Picatinny Arsenal

Funding from: ARO W911NF2110046 **ARO W911NF10077**